IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i19-20p1532-1542.html
   My bibliography  Save this article

Strong consistency and asymptotic normality of least squares estimators for PGARCH and PARMA-PGARCH models

Author

Listed:
  • Bibi, Abdelouahab
  • Lescheb, Ines

Abstract

This paper deals with the probabilistic structure and the asymptotic properties of parameters least squares estimates (LSE) for periodic GARCH (PGARCH) and for PARMA-PGARCH models. In this class of models, the parameters are allowed to switch between different regimes. Firstly, we give necessary and sufficient conditions ensuring the existence of stationary solutions (in a periodic sense) and for the existence of moments of any order. Secondly, a least squares estimation approach for estimating PGARCH and PARMA-PGARCH models are discussed. The strong consistency and the asymptotic normality of the estimators are studied given mild regularity conditions, requiring strict stationarity and the finiteness of moments of some order for the errors term.

Suggested Citation

  • Bibi, Abdelouahab & Lescheb, Ines, 2010. "Strong consistency and asymptotic normality of least squares estimators for PGARCH and PARMA-PGARCH models," Statistics & Probability Letters, Elsevier, vol. 80(19-20), pages 1532-1542, October.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:19-20:p:1532-1542
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00168-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Abdelouahab Bibi & Christian Francq, 2003. "Consistent and asymptotically normal estimators for cyclically time-dependent linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 41-68, March.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    5. I. V. Basawa & Robert Lund, 2001. "Large Sample Properties of Parameter Estimates for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(6), pages 651-663, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bibi, Abdelouahab & Lescheb, Ines, 2014. "A note on integrated periodic GARCH processes," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 121-124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Regnard, Nazim & Zakoïan, Jean-Michel, 2011. "A conditionally heteroskedastic model with time-varying coefficients for daily gas spot prices," Energy Economics, Elsevier, vol. 33(6), pages 1240-1251.
    2. repec:dau:papers:123456789/2285 is not listed on IDEAS
    3. Yacouba Boubacar Maïnassara & Landy Rabehasaina, 2020. "Estimation of weak ARMA models with regime changes," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 1-52, April.
    4. Nazim Regnard & Jean‐Michel Zakoïan, 2010. "Structure and estimation of a class of nonstationary yet nonexplosive GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 348-364, September.
    5. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    6. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    7. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    8. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    9. Francesco Audrino & Fabio Trojani, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369, April.
    10. Bernd Hayo & Ali M. Kutan, 2005. "The impact of news, oil prices, and global market developments on Russian financial markets," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 13(2), pages 373-393, April.
    11. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    12. Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
    13. H. J. Turtle & Kainan Wang, 2014. "Modeling Conditional Covariances With Economic Information Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 217-236, April.
    14. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
    15. Caporin, Massimiliano & Preś, Juliusz, 2012. "Modelling and forecasting wind speed intensity for weather risk management," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3459-3476.
    16. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    17. Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
    18. Madhusudan Karmakar & Girja Kant Shukla, 2016. "The Effect of Spillover on Volatility Forecasting: An Empirical Study in Indian Stock Market," Metamorphosis: A Journal of Management Research, , vol. 15(1), pages 20-30, June.
    19. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    20. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    21. Silvano Bordignon & Massimiliano Caporin & Francesco Lisi, 2009. "Periodic Long-Memory GARCH Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 60-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:19-20:p:1532-1542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.