IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v85y2023i3p514-544.html
   My bibliography  Save this article

Estimation of Panel Data Models with Mixed Sampling Frequencies

Author

Listed:
  • Yimin Yang
  • Fei Jia
  • Haoran Li

Abstract

Standard panel models usually assume that data are available at the same frequency. Occasionally, researchers might work with variables sampled at different frequencies. A common practice is to aggregate all variables to the same frequency by an equal weighting scheme. We show that such a simple aggregation scheme results in biases for common estimators. We propose a data‐driven method to determine weights for aggregation. We further demonstrate that, in contrast with single‐frequency panel models, the Mundlak device and the Chamberlain's approach lead to different estimators for panels with mixed sampling frequencies. The proposed estimators have satisfying finite sample performances in various simulation designs. As an empirical illustration, we apply the new method to the estimation of the effects of temperature fluctuations on economic growth. The empirical evidence shows that the temperature shocks mainly work through the level effect instead of the growth effect for poor countries.

Suggested Citation

  • Yimin Yang & Fei Jia & Haoran Li, 2023. "Estimation of Panel Data Models with Mixed Sampling Frequencies," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 514-544, June.
  • Handle: RePEc:bla:obuest:v:85:y:2023:i:3:p:514-544
    DOI: 10.1111/obes.12536
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/obes.12536
    Download Restriction: no

    File URL: https://libkey.io/10.1111/obes.12536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wooldridge, Jeffrey M., 2019. "Correlated random effects models with unbalanced panels," Journal of Econometrics, Elsevier, vol. 211(1), pages 137-150.
    2. Steve Bond & Asli Leblebicioglu & Fabio Schiantarelli, 2010. "Capital accumulation and growth: a new look at the empirical evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(7), pages 1073-1099, November/.
    3. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    4. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    5. Jason Abrevaya, 2013. "The projection approach for unbalanced panel data," Econometrics Journal, Royal Economic Society, vol. 16(2), pages 161-178, June.
    6. Hsiao, Cheng, 1979. "Linear regression using both temporally aggregated and temporally disaggregated data," Journal of Econometrics, Elsevier, vol. 10(2), pages 243-252, June.
    7. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    8. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    9. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    10. Khalaf, Lynda & Kichian, Maral & Saunders, Charles J. & Voia, Marcel, 2021. "Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit," Journal of Econometrics, Elsevier, vol. 220(2), pages 589-605.
    11. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
    12. Phillips, P C B, 1974. "The Estimation of Some Continuous Time Models," Econometrica, Econometric Society, vol. 42(5), pages 803-823, September.
    13. Riju Joshi & Jeffrey M. Wooldridge, 2019. "Correlated Random Effects Models with Endogenous Explanatory Variables and Unbalanced Panels," Annals of Economics and Statistics, GENES, issue 134, pages 243-268.
    14. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    15. Sims, Christopher A, 1971. "Discrete Approximations to Continuous Time Distributed Lags in Econometrics," Econometrica, Econometric Society, vol. 39(3), pages 545-563, May.
    16. Phillips, P C B, 1972. "The Structural Estimation of a Stochastic Differential Equation System," Econometrica, Econometric Society, vol. 40(6), pages 1021-1041, November.
    17. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    18. Chris Muris, 2020. "Efficient GMM Estimation with Incomplete Data," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 518-530, July.
    19. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Millimet, Daniel L., 2024. "(Don't) Walk This Way: The Econometrics of Crosswalks," IZA Discussion Papers 17154, Institute of Labor Economics (IZA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    2. Pourya Valizadeh & Shu Wen Ng, 2021. "Would A National Sugar‐Sweetened Beverage Tax in the United States Be Well Targeted?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 961-986, May.
    3. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    4. Arnd Kölling & Claus Schnabel, 2022. "Owners, external managers and industrial relations in German establishments," British Journal of Industrial Relations, London School of Economics, vol. 60(2), pages 424-443, June.
    5. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    6. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    7. Dilmaghani, Maryam, 2021. "The gender gap in competitive chess across countries: Commanding queens in command economies," Journal of Comparative Economics, Elsevier, vol. 49(2), pages 425-441.
    8. Fattouh, Bassam & Pisicoli, Beniamino & Scaramozzino, Pasquale, 2024. "Debt and financial fragility: Italian non-financial companies after the pandemic," Economic Modelling, Elsevier, vol. 131(C).
    9. Khalaf, Lynda & Kichian, Maral & Saunders, Charles J. & Voia, Marcel, 2021. "Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit," Journal of Econometrics, Elsevier, vol. 220(2), pages 589-605.
    10. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    11. Bo E. Honoré & Luojia Hu & Ekaterini Kyriazidou & Martin Weidner, 2023. "Simultaneity in binary outcome models with an application to employment for couples," Empirical Economics, Springer, vol. 64(6), pages 3197-3233, June.
    12. Mark Musumba & Cheryl A. Palm & Adam M. Komarek & Patrick K. Mutuo & Bocary Kaya, 2022. "Household livelihood diversification in rural Africa," Agricultural Economics, International Association of Agricultural Economists, vol. 53(2), pages 246-256, March.
    13. Jie Wei & Yonghui Zhang, 2022. "Panel Probit Models with Time‐Varying Individual Effects: Reestimating the Effects of Fertility on Female Labour Participation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 799-829, August.
    14. Becker, Annette & Hottenrott, Hanna & Mukherjee, Anwesha, 2022. "Division of labor in R&D? Firm size and specialization in corporate research," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 1-23.
    15. Artūras Juodis & Vasilis Sarafidis, 2018. "Fixed T dynamic panel data estimators with multifactor errors," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 893-929, September.
    16. Arnd Kölling, 2022. "Monopsony power and the demand for low-skilled workers," The Economic and Labour Relations Review, , vol. 33(2), pages 377-395, June.
    17. Mary A. Burke & Ali Ozdagli, 2023. "Household Inflation Expectations and Consumer Spending: Evidence from Panel Data," The Review of Economics and Statistics, MIT Press, vol. 105(4), pages 948-961, July.
    18. Gaétan De Rassenfosse & Paul H. Jensen & T'Mir Julius & Alfons Palangkaraya & Elizabeth Webster, 2023. "Is the Patent System an Even Playing Field? The Effect of Patent Attorney Firms," Journal of Industrial Economics, Wiley Blackwell, vol. 71(1), pages 124-142, March.
    19. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    20. Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2021. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Empirical Economics, Springer, vol. 60(1), pages 227-259, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:85:y:2023:i:3:p:514-544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.