IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i11p510-d662597.html
   My bibliography  Save this article

Forecasting Stochastic Volatility Characteristics for the Financial Fossil Oil Market Densities

Author

Listed:
  • Per Bjarte Solibakke

    (Faculty of Economics and Management, Norwegian University of Science and Technology (NTNU), 6025 Aalesund, Norway)

Abstract

This paper builds and implements multifactor stochastic volatility models for the international oil/energy markets (Brent oil and WTI oil) for the period 2011–2021. The main objective is to make step ahead volatility predictions for the front month contracts followed by an implication discussion for the market (differences) and observed data dependence important for market participants, implying predictability. The paper estimates multifactor stochastic volatility models for both contracts giving access to a long-simulated realization of the state vector with associated contract movements. The realization establishes a functional form of the conditional distributions, which are evaluated on observed data giving the conditional mean function for the volatility factors at the data points (nonlinear Kalman filter). For both Brent and WTI oil contracts, the first factor is a slow-moving persistent factor while the second factor is a fast-moving immediate mean reverting factor. The negative correlation between the mean and volatility suggests higher volatilities from negative price movements. The results indicate that holding volatility as an asset of its own is insurance against market crashes as well as being an excellent diversification instrument. Furthermore, the volatility data dependence is strong, indicating predictability. Hence, using the Kalman filter from a realization of an optimal multifactor SV model visualizes the latent step ahead volatility paths, and the data dependence gives access to accurate static forecasts. The results extend market transparency and make it easier to implement risk management including derivative trading (including swaps).

Suggested Citation

  • Per Bjarte Solibakke, 2021. "Forecasting Stochastic Volatility Characteristics for the Financial Fossil Oil Market Densities," JRFM, MDPI, vol. 14(11), pages 1-17, October.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:11:p:510-:d:662597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/11/510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/11/510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
    2. Vo, Minh, 2011. "Oil and stock market volatility: A multivariate stochastic volatility perspective," Energy Economics, Elsevier, vol. 33(5), pages 956-965, September.
    3. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    4. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    5. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    6. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    7. Robin L. Lumsdaine & David H. Papell, 1997. "Multiple Trend Breaks And The Unit-Root Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 212-218, May.
    8. Ioannis Kyriakou & Panos K. Pouliasis & Nikos C. Papapostolou, 2016. "Jumps and stochastic volatility in crude oil prices and advances in average option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1859-1873, December.
    9. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    10. A. Ronald Gallant & George Tauchen, "undated". "Reproducing Partial Observed Systems with Application to Interest Rate Diffusions," Computing in Economics and Finance 1997 114, Society for Computational Economics.
    11. Dondukova Oyuna & Liu Yaobin, 2021. "Forecasting the Crude Oil Prices Volatility With Stochastic Volatility Models," SAGE Open, , vol. 11(3), pages 21582440211, July.
    12. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomas Macak, 2022. "Financial Stability Control for Business Sustainability: A Case Study from Food Production," Mathematics, MDPI, vol. 10(3), pages 1-16, January.
    2. Chi Yong & Mu Tong & Zhongyi Yang & Jixian Zhou, 2023. "Conventional Natural Gas Project Investment and Decision Making under Multiple Uncertainties," Energies, MDPI, vol. 16(5), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    3. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    4. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    5. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    7. Per Bjarte Solibakke, 2022. "Projecting and Forecasting the Latent Volatility for the Nasdaq OMX Nordic/Baltic Financial Electricity Market Applying Stochastic Volatility Market Characteristics," Energies, MDPI, vol. 15(10), pages 1-20, May.
    8. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    9. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    10. Antonio E. Noriega & Araceli Ramírez-Zamora, 1999. "Unit roots and multiple structural breaks in real output," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 14(2), pages 163-188.
    11. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    12. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    13. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    14. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    16. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    17. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    18. Bing-Huei Lin & Mao-Wei Hung & Jr-Yan Wang & Ping-Da Wu, 2013. "A lattice model for option pricing under GARCH-jump processes," Review of Derivatives Research, Springer, vol. 16(3), pages 295-329, October.
    19. Ming Liu & Harold H. Zhang, "undated". "Specification Tests in the Efficient Method of Moments Framework with Application to the Stochastic Volatility Models," Computing in Economics and Finance 1997 93, Society for Computational Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:11:p:510-:d:662597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.