IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v81y1997i1p273-280.html
   My bibliography  Save this article

Recognizing changing seasonal patterns using artificial neural networks

Author

Listed:
  • Franses, Philip Hans
  • Draisma, Gerrit

Abstract

No abstract is available for this item.

Suggested Citation

  • Franses, Philip Hans & Draisma, Gerrit, 1997. "Recognizing changing seasonal patterns using artificial neural networks," Journal of Econometrics, Elsevier, vol. 81(1), pages 273-280, November.
  • Handle: RePEc:eee:econom:v:81:y:1997:i:1:p:273-280
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(97)00047-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    2. Canova, Fabio & Ghysels, Eric, 1994. "Changes in seasonal patterns : Are they cyclical?," Journal of Economic Dynamics and Control, Elsevier, vol. 18(6), pages 1143-1171, November.
    3. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    4. Lin, Chien-Fu Jeff & Terasvirta, Timo, 1994. "Testing the constancy of regression parameters against continuous structural change," Journal of Econometrics, Elsevier, vol. 62(2), pages 211-228, June.
    5. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moisan, Stella & Herrera, Rodrigo & Clements, Adam, 2018. "A dynamic multiple equation approach for forecasting PM2.5 pollution in Santiago, Chile," International Journal of Forecasting, Elsevier, vol. 34(4), pages 566-581.
    2. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    3. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    4. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    5. Vroomen, Bjorn & Hans Franses, Philip & van Nierop, Erjen, 2004. "Modeling consideration sets and brand choice using artificial neural networks," European Journal of Operational Research, Elsevier, vol. 154(1), pages 206-217, April.
    6. Gulay, Emrah & Duru, Okan, 2020. "Hybrid modeling in the predictive analytics of energy systems and prices," Applied Energy, Elsevier, vol. 268(C).
    7. Chu, Ching-Wu & Zhang, Guoqiang Peter, 2003. "A comparative study of linear and nonlinear models for aggregate retail sales forecasting," International Journal of Production Economics, Elsevier, vol. 86(3), pages 217-231, December.
    8. Qi, Min & Zhang, Guoqiang Peter, 2001. "An investigation of model selection criteria for neural network time series forecasting," European Journal of Operational Research, Elsevier, vol. 132(3), pages 666-680, August.
    9. Eisinga, R. & Franses, Ph.H.B.F. & van Dijk, D.J.C., 1997. "Timing of Vote Decision in First and Second Order Dutch Elections 1978-1995: Evidence from Artificial Neural Networks," Econometric Institute Research Papers EI 9733/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Zhang, Li & Wang, Lu & Wang, Xunxiao & Zhang, Yaojie & Pan, Zhigang, 2022. "How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method," Resources Policy, Elsevier, vol. 77(C).
    11. Tortum, Ahmet & Yayla, Nadir & Çelik, Cafer & Gökdağ, Mahir, 2007. "The investigation of model selection criteria in artificial neural networks by the Taguchi method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 446-468.
    12. Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed & Huang, Xu, 2019. "Forecasting tourism demand with denoised neural networks," Annals of Tourism Research, Elsevier, vol. 74(C), pages 134-154.
    13. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kavussanos, Manolis G. & Alizadeh-M, Amir H., 2002. "Seasonality patterns in tanker spot freight rate markets," Economic Modelling, Elsevier, vol. 19(5), pages 747-782, November.
    2. Ghassen El Montasser, 2015. "The Seasonal KPSS Test: Examining Possible Applications with Monthly Data and Additional Deterministic Terms," Econometrics, MDPI, vol. 3(2), pages 1-16, May.
    3. Dick van Dijk 1 & Birgit Strikholm & Timo Teräsvirta, 2003. "The effects of institutional and technological change and business cycle fluctuations on seasonal patterns in quarterly industrial production series," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 79-98, June.
    4. El Montasser, Ghassen, 2012. "The seasonal KPSS Test: some extensions and further results," MPRA Paper 45110, University Library of Munich, Germany, revised 04 Mar 2014.
    5. Paap, Richard & Franses, Philip Hans & Hoek, Henk, 1997. "Mean shifts, unit roots and forecasting seasonal time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 357-368, September.
    6. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
    7. El Montasser, Ghassen, 2014. "The seasonal KPSS Test: some extensions and further results," MPRA Paper 54920, University Library of Munich, Germany.
    8. Pulapre Balakrishnan & M Parameswaran, 2019. "Modeling the Dynamics of Inflation in India," Working Papers 16, Ashoka University, Department of Economics.
    9. Koop, Gary & Dijk, Herman K. Van, 2000. "Testing for integration using evolving trend and seasonals models: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 97(2), pages 261-291, August.
    10. Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
    11. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
    12. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    13. Evren Erdoğan Cosar, 2006. "Seasonal behaviour of the consumer price index of Turkey," Applied Economics Letters, Taylor & Francis Journals, vol. 13(7), pages 449-455.
    14. Mr. Francis Y Kumah, 2006. "The Role of Seasonality and Monetary Policy in Inflation Forecasting," IMF Working Papers 2006/175, International Monetary Fund.
    15. Shipra Banik & Param Silvapulle, 1999. "Testing for Seasonal Stability in Unemployment Series: International Evidence," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 26(2), pages 123-139, June.
    16. Guglielmo M. Caporale & Luis A. Gil‐Alana, 2004. "Testing for Seasonal Fractional Roots in German Real Output," German Economic Review, Verein für Socialpolitik, vol. 5(3), pages 319-333, August.
    17. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    18. Philip Kostov & John Lingard, 2005. "Seasonally specific model analysis of UK cereals prices," Econometrics 0507014, University Library of Munich, Germany.
    19. Ghysels, Eric & Perron, Pierre, 1996. "The effect of linear filters on dynamic time series with structural change," Journal of Econometrics, Elsevier, vol. 70(1), pages 69-97, January.
    20. Gabriel Pons Rotger, 2004. "Seasonal Unit Root Testing Based on the Temporal Aggregation of Seasonal Cycles," Economics Working Papers 2004-1, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:81:y:1997:i:1:p:273-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.