IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/70352.html
   My bibliography  Save this paper

Volatility Switching in Shanghai Stock Exchange: Does regulation help reduce volatility?

Author

Listed:
  • Zhang, Dayong
  • Dickinson, David
  • Barassi, Marco

Abstract

This paper investigates volatility switching in the Shanghai Stock Exchange (SSE hereafter,) using several recently developed techniques. They can be categorized into CUSUM type tests and Markov-Switching ARCH models. By detecting and dating switches with these models, we are able to show the volatility dynamics in SSE. Investigating the events in SSE around the switching date suggests that regulation improvements significantly reduce the volatility of the underlying market. Furthermore, the empirical results show that outliers can have significant impact on the conclusion and thus should properly be removed.

Suggested Citation

  • Zhang, Dayong & Dickinson, David & Barassi, Marco, 2008. "Volatility Switching in Shanghai Stock Exchange: Does regulation help reduce volatility?," MPRA Paper 70352, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:70352
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/70352/1/MPRA_paper_70352.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luc Bauwens & Arie Preminger & Jeroen V. K. Rombouts, 2010. "Theory and inference for a Markov switching GARCH model," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 218-244, July.
    2. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    3. Dueker, Michael J, 1997. "Markov Switching in GARCH Processes and Mean-Reverting Stock-Market Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 26-34, January.
    4. Jurgen A. Doornik & Marius Ooms, 2005. "Outlier Detection in GARCH Models," Tinbergen Institute Discussion Papers 05-092/4, Tinbergen Institute.
    5. Kokoszka, Piotr & Leipus, Remigijus, 1998. "Change-point in the mean of dependent observations," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 385-393, November.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    8. Cai, Jun, 1994. "A Markov Model of Switching-Regime ARCH," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 309-316, July.
    9. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucía Morales & Bernadette Andreosso-O’Callaghan, 2014. "Volatility analysis of precious metals returns and oil returns: An ICSS approach," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 38(3), pages 492-517, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    2. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Adnen Ben Nasr & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Modelling the volatility of the Dow Jones Islamic Market World Index using a fractionally integrated time-varying GARCH (FITVGARCH) model," Applied Financial Economics, Taylor & Francis Journals, vol. 24(14), pages 993-1004, July.
    4. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    5. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    6. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    7. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    8. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    9. Szabolcs Blazsek & Anna Downarowicz, 2013. "Forecasting hedge fund volatility: a Markov regime-switching approach," The European Journal of Finance, Taylor & Francis Journals, vol. 19(4), pages 243-275, April.
    10. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    11. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    12. Shi, Yanlin & Ho, Kin-Yip & Liu, Wai-Man, 2016. "Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 291-312.
    13. Szabolcs Blazsek & Anna Downarowicz, 2008. "Regime switching models of hedge fund returns," Faculty Working Papers 12/08, School of Economics and Business Administration, University of Navarra.
    14. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    15. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    16. Jose Luis Miralles Marcelo & Jose Luis Miralles Quiros & Maria del Mar Miralles Quiros, 2007. "Sudden shifts in variance in the Spanish market: persistence and spillover effects," Applied Financial Economics, Taylor & Francis Journals, vol. 18(2), pages 115-124.
    17. Monica Billio & Maddalena Cavicchioli, 2013. "�Markov Switching Models for Volatility: Filtering, Approximation and Duality�," Working Papers 2013:24, Department of Economics, University of Venice "Ca' Foscari".
    18. Xu, Libo & Serletis, Apostolos, 2016. "Monetary and fiscal policy switching with time-varying volatilities," Economics Letters, Elsevier, vol. 145(C), pages 202-205.
    19. Miralles Marcelo, Jose Luis & Quiros, Jose Luis Miralles & Quiros, Maria del Mar Miralles, 2008. "Asymmetric variance and spillover effects: Regime shifts in the Spanish stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(1), pages 1-15, February.
    20. Rey, Clément & Rey, Serge & Viala, Jean-Renaud, 2014. "Detection of high and low states in stock market returns with MCMC method in a Markov switching model," Economic Modelling, Elsevier, vol. 41(C), pages 145-155.

    More about this item

    Keywords

    Volatility switching; CUSUM test; Markov-Switching ARCH; Shanghai Stock Exchange; Outlier.;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:70352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.