IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v33y2015icp1-18.html
   My bibliography  Save this article

Power transformations of absolute returns and long memory estimation

Author

Listed:
  • Dalla, Violetta

Abstract

Different power transformations of absolute returns of various financial assets have been found to display different magnitudes of sample autocorrelations, a property referred to as the Taylor effect. In this paper, we consider the long memory stochastic volatility model for the returns, under which, the asymptotic rate of decay of the autocorrelations of powers of absolute returns is governed by their long memory parameter. Although the true long memory parameter of powers of absolute returns is the same across different powers, we show that the local Whittle estimator of the long memory parameter has finite-sample bias that differs across the power transformations chosen. A Monte-Carlo experiment provides evidence in support of our theoretical finding that the reported variation of the estimates of the long memory parameter for power transformations of returns could be due to finite-sample bias of the estimator. The local Whittle estimates of powers of absolute returns for the S&P500 index and the DM/USD exchange rate are also examined.

Suggested Citation

  • Dalla, Violetta, 2015. "Power transformations of absolute returns and long memory estimation," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 1-18.
  • Handle: RePEc:eee:empfin:v:33:y:2015:i:c:p:1-18
    DOI: 10.1016/j.jempfin.2015.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539815000468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2015.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Changli & Teräsvirta, Timo & Malmsten, Hans, 2002. "Moment Structure Of A Family Of First-Order Exponential Garch Models," Econometric Theory, Cambridge University Press, vol. 18(4), pages 868-885, August.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Malmsten, Hans & Teräsvirta, Timo, 2004. "Stylized Facts of Financial Time Series and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 563, Stockholm School of Economics, revised 03 Sep 2004.
    4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    5. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    6. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
    7. J. Arteche, 2012. "Semiparametric Inference in Correlated Long Memory Signal Plus Noise Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(4), pages 440-474.
    8. Richard T. Baillie & George Kapetanios, 2013. "Estimation and inference for impulse response functions from univariate strongly persistent processes," Econometrics Journal, Royal Economic Society, vol. 16(3), pages 373-399, October.
    9. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    10. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    11. Jonathan Wright, 2002. "Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
    12. Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, Department of Economics and Business Economics, Aarhus University.
    13. Haldrup, Niels & Nielsen, Morten Orregaard, 2007. "Estimation of fractional integration in the presence of data noise," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3100-3114, March.
    14. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    15. Qu, Zhongjun, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 423-438.
    16. repec:adr:anecst:y:1995:i:40:p:04 is not listed on IDEAS
    17. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
    18. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    19. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2008. "Corrigendum to "Estimating Long Memory in Volatility"," Econometrica, Econometric Society, vol. 76(3), pages 661-662, May.
    20. Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameter for nonlinear time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 211-251, March.
    21. Dalla, Violetta & Giraitis, Liudas & Hidalgo, Javier, 2006. "Consistent estimation of the memory parameter for nonlinear time series," LSE Research Online Documents on Economics 6813, London School of Economics and Political Science, LSE Library.
    22. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    23. Ruiz, Esther & Veiga, Helena, 2008. "Modelling long-memory volatilities with leverage effect: A-LMSV versus FIEGARCH," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2846-2862, February.
    24. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    25. Teräsvirta, Timo & Zhao, Zhenfang, 2007. "Stylized Facts of Return Series, Robust Estimates, and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 662, Stockholm School of Economics, revised 01 Aug 2007.
    26. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    27. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    28. C. W. J. Granger & Zhuanxin Ding, 1995. "Some Properties of Absolute Return: An Alternative Measure of Risk," Annals of Economics and Statistics, GENES, issue 40, pages 67-91.
    29. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    30. Afonso Goncalves da Silva & Peter Robinson, 2008. "Finite Sample Performance in Cointegration Analysis of Nonlinear Time Series with Long Memory," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 268-297.
    31. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    32. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    33. Ana Pérez & Esther Ruiz, 2003. "Properties of the Sample Autocorrelations of Nonlinear Transformations in Long-Memory Stochastic Volatility Models," Journal of Financial Econometrics, Oxford University Press, vol. 1(3), pages 420-444.
    34. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    35. Chen, Chung & Tiao, George C, 1990. "Random Level-Shift Time Series Models, ARIMA Approximations, and Level-Shift Detection," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 83-97, January.
    36. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Modified information criteria and selection of long memory time series models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 116-131.
    37. Mora Galán, Alberto & Pérez, Ana, 2004. "Stochastic volatility models and the Taylor effect," DES - Working Papers. Statistics and Econometrics. WS ws046315, Universidad Carlos III de Madrid. Departamento de Estadística.
    38. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 1(3), pages 445-470.
    39. Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameterfor nonlinear time series," STICERD - Econometrics Paper Series 497, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina Balboa & Paulo M. M. Rodrigues & Antonio Rubia & A. M. Robert Taylor, 2021. "Multivariate fractional integration tests allowing for conditional heteroskedasticity with an application to return volatility and trading volume," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 544-565, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz Esther & Pérez Ana, 2012. "Maximally Autocorrelated Power Transformations: A Closer Look at the Properties of Stochastic Volatility Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-33, September.
    2. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    3. Ruiz, Esther & Veiga, Helena, 2008. "Modelling long-memory volatilities with leverage effect: A-LMSV versus FIEGARCH," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2846-2862, February.
    4. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    5. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    7. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    8. Josu Arteche, 2012. "Standard and seasonal long memory in volatility: an application to Spanish inflation," Empirical Economics, Springer, vol. 42(3), pages 693-712, June.
    9. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    10. Malmsten, Hans & Teräsvirta, Timo, 2004. "Stylized Facts of Financial Time Series and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 563, Stockholm School of Economics, revised 03 Sep 2004.
    11. Per Frederiksen & Morten Orregaard Nielsen, 2008. "Bias-Reduced Estimation of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 496-512, Fall.
    12. Charfeddine, Lanouar, 2014. "True or spurious long memory in volatility: Further evidence on the energy futures markets," Energy Policy, Elsevier, vol. 71(C), pages 76-93.
    13. repec:awi:wpaper:0472 is not listed on IDEAS
    14. Giraitis, Liudas & Leipus, Remigijus & Robinson, Peter M. & Surgailis, Donatas, 2004. "LARCH, leverage, and long memory," LSE Research Online Documents on Economics 294, London School of Economics and Political Science, LSE Library.
    15. Haas, Markus, 2009. "Persistence in volatility, conditional kurtosis, and the Taylor property in absolute value GARCH processes," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1674-1683, August.
    16. Liudas Giraitis, 2004. "LARCH, Leverage, and Long Memory," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 177-210.
    17. Karanasos, Menelaos & Kim, Jinki, 2006. "A re-examination of the asymmetric power ARCH model," Journal of Empirical Finance, Elsevier, vol. 13(1), pages 113-128, January.
    18. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    19. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    20. repec:ipg:wpaper:2014-503 is not listed on IDEAS
    21. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    22. Liudas Giraitis & Remigijus Leipus & Peter M Robinson & Donatas Surgailis, 2003. "LARCH, Leverage and Long Memory," STICERD - Econometrics Paper Series 460, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

    More about this item

    Keywords

    Long memory stochastic volatility; Local Whittle estimation; Taylor effect;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:33:y:2015:i:c:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.