Is the prediction of precious metal market volatility influenced by internet searches regarding uncertainty?
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2024.105269
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022.
"Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model,"
Energy Economics, Elsevier, vol. 108(C).
- Afees A. Salisu & Rangan Gupta & Riza Demirer, 2021. "Global Financial Cycle and the Predictability of Oil Market Volatility: Evidence from a GARCH-MIDAS Model," Working Papers 202121, University of Pretoria, Department of Economics.
- Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
- Salisu, Afees A. & Gupta, Rangan & Bouri, Elie & Ji, Qiang, 2020.
"The role of global economic conditions in forecasting gold market volatility: Evidence from a GARCH-MIDAS approach,"
Research in International Business and Finance, Elsevier, vol. 54(C).
- Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2020. "The Role of Global Economic Conditions in Forecasting Gold Market Volatility: Evidence from a GARCH-MIDAS Approach," Working Papers 202043, University of Pretoria, Department of Economics.
- He, Kaijian & Chen, Yanhui & Tso, Geoffrey K.F., 2017. "Price forecasting in the precious metal market: A multivariate EMD denoising approach," Resources Policy, Elsevier, vol. 54(C), pages 9-24.
- Amendola, Alessandra & Candila, Vincenzo & Gallo, Giampiero M., 2021. "Choosing the frequency of volatility components within the Double Asymmetric GARCH–MIDAS–X model," Econometrics and Statistics, Elsevier, vol. 20(C), pages 12-28.
- Demiralay, Sercan & Ulusoy, Veysel, 2014. "Non-linear volatility dynamics and risk management of precious metals," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 183-202.
- Wang, Yu Shan & Chueh, Yen Ling, 2013. "Dynamic transmission effects between the interest rate, the US dollar, and gold and crude oil prices," Economic Modelling, Elsevier, vol. 30(C), pages 792-798.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014.
"Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory,"
Energy Economics, Elsevier, vol. 41(C), pages 1-18.
- Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Working Papers 2014-389, Department of Research, Ipag Business School.
- Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Working Papers 2014-325, Department of Research, Ipag Business School.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Fang, Libing & Yu, Honghai & Xiao, Wen, 2018. "Forecasting gold futures market volatility using macroeconomic variables in the United States," Economic Modelling, Elsevier, vol. 72(C), pages 249-259.
- Gil-Alana, Luis A. & Tripathy, Trilochan, 2014.
"Modelling volatility persistence and asymmetry: A Study on selected Indian non-ferrous metals markets,"
Resources Policy, Elsevier, vol. 41(C), pages 31-39.
- Luis Alberiko Gil-Alaña & Trilochan Tripathy, 2013. "Modelling volatility persistence and asymmetry: a study on selected Indian non-ferrous metals markets," NCID Working Papers 11/2013, Navarra Center for International Development, University of Navarra.
- Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2010.
"The macroeconomic determinants of volatility in precious metals markets,"
Resources Policy, Elsevier, vol. 35(2), pages 65-71, June.
- Jonathan A. Batten, Cetin Ciner and Brian M. Lucey, 2008. "The Macroeconomic Determinants of Volatility in Precious Metals Markets," The Institute for International Integration Studies Discussion Paper Series iiisdp255, IIIS.
- Zhang, Li & Li, Yan & Yu, Sixin & Wang, Lu, 2023. "Risk transmission of El Niño-induced climate change to regional Green Economy Index," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 860-872.
- Bentes, Sonia R., 2015. "Forecasting volatility in gold returns under the GARCH, IGARCH and FIGARCH frameworks: New evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 355-364.
- Liang, Chao & Wang, Lu & Duong, Duy, 2024. "More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 1-19.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Wei, Yu & Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A., 2023. "Cryptocurrency uncertainty and volatility forecasting of precious metal futures markets," Journal of Commodity Markets, Elsevier, vol. 29(C).
- Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
- Li, Xiafei & Guo, Qiang & Liang, Chao & Umar, Muhammad, 2023. "Forecasting gold volatility with geopolitical risk indices," Research in International Business and Finance, Elsevier, vol. 64(C).
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hasanov, Akram Shavkatovich & Burkhanov, Aktam Usmanovich & Usmonov, Bunyod & Khajimuratov, Nizomjon Shukurullaevich & Khurramova, Madina Mansur qizi, 2024. "The role of sudden variance shifts in predicting volatility in bioenergy crop markets under structural breaks," Energy, Elsevier, vol. 293(C).
- Schmidbauer, Harald & Rösch, Angi, 2018. "The impact of festivities on gold price expectation and volatility," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 117-131.
- Duc Khuong Nguyen & Thomas Walther, 2020.
"Modeling and forecasting commodity market volatility with long‐term economic and financial variables,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
- Nguyen, Duc Khuong & Walther, Thomas, 2017. "Modeling and forecasting commodity market volatility with long-term economic and financial variables," MPRA Paper 84464, University Library of Munich, Germany, revised Jan 2018.
- Thomas Walther & Duc Khuong Nguyen, 2018. "Modeling and Forecasting Commodity Market Volatility with Long-term Economic and Financial Variables," Working Papers on Finance 1824, University of St. Gallen, School of Finance.
- CARPANTIER, Jean - François, 2010.
"Commodities inventory effect,"
LIDAM Discussion Papers CORE
2010040, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jean-François Carpantier & Arnaud Dufays, 2013. "Commodities Inventory Effect," DEM Discussion Paper Series 13-07, Department of Economics at the University of Luxembourg.
- Jean-François Carpantier & Arnaud Dufays, 2013. "Commodities Inventory Effect," Working Papers hal-01821144, HAL.
- Jean-Francois Carpantier, 2010. "Commodities inventory effect," Working Papers hal-01821158, HAL.
- Freddy Ronalde Camacho-Villagomez & Yanina Shegia Bajaña-Villagomez & Andrea Johanna RodrÃguez-Bustos, 2024. "Estimating the Impact of Oil Price Volatility on the Ecuadorian Economy: A MIDAS Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 371-376, July.
- Behmiri, Niaz Bashiri & Manera, Matteo, 2015.
"The role of outliers and oil price shocks on volatility of metal prices,"
Resources Policy, Elsevier, vol. 46(P2), pages 139-150.
- Niaz Bashiri Behmiri & Matteo Manera, 2015. "The Role of Outliers and Oil Price Shocks on Volatility of Metal Prices," Working Papers 2015.77, Fondazione Eni Enrico Mattei.
- Behmiri, Niaz Bashiri & Manera, Matteo, 2015. "The Role of Outliers and Oil Price Shocks on Volatility of Metal Prices," Energy: Resources and Markets 208768, Fondazione Eni Enrico Mattei (FEEM).
- Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018.
"Volatility forecasting across tanker freight rates: The role of oil price shocks,"
Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
- Konstantinos Gavriilidis & Dimos S. Kambouroudis & Katerina Tsakou & Dimitris S. Tsouknidis, 2018. "Volatility forecasting across tanker freight rates: the role of oil price shocks," Working Papers 2018-27, Swansea University, School of Management.
- Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
- Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019.
"Time-varying risk aversion and realized gold volatility,"
The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
- Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2018. "Time-Varying Risk Aversion and Realized Gold Volatility," Working Papers 201881, University of Pretoria, Department of Economics.
- Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
- Cheng, Sheng & Deng, MingJie & Liang, Ruibin & Cao, Yan, 2023. "Asymmetric volatility spillover among global oil, gold, and Chinese sectors in the presence of major emergencies," Resources Policy, Elsevier, vol. 82(C).
- Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023.
"Bayesian predictive distributions of oil returns using mixed data sampling volatility models,"
Resources Policy, Elsevier, vol. 86(PA).
- Virbickaite, Audrone & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian Predictive Distributions of Oil Returns Using Mixed Data Sampling Volatility Models," Working Papers 2023:7, Örebro University, School of Business.
- Yaqoob, Tanzeela & Maqsood, Arfa, 2024. "The potency of time series outliers in volatile models: An empirical analysis of fintech, and mineral resources," Resources Policy, Elsevier, vol. 89(C).
- Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
- Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
- V. Candila & O. Cepni & G. M. Gallo & R. Gupta, 2024.
"Influence of Local and Global Economic Policy Uncertainty on the volatility of US state-level equity returns: Evidence from a GARCH-MIDAS approach with Shrinkage and Cluster Analysis,"
Working Paper CRENoS
202414, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Vincenzo Candila & Oguzhan Cepni & Giampiero M. Gallo & Rangan Gupta, 2024. "Influence of Local and Global Economic Policy Uncertainty on the Volatility of US State-Level Equity Returns: Evidence from a GARCH-MIDAS Approach with Shrinkage and Cluster Analysis," Working Papers 202437, University of Pretoria, Department of Economics.
- Yaya, OlaOluwa S. & Tumala, Mohammed M. & Udomboso, Christopher G., 2016. "Volatility persistence and returns spillovers between oil and gold prices: Analysis before and after the global financial crisis," Resources Policy, Elsevier, vol. 49(C), pages 273-281.
- Chevallier, Julien & Ielpo, Florian, 2017. "Investigating the leverage effect in commodity markets with a recursive estimation approach," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 763-778.
- Wang, Zijin & Chen, Peimin & Liu, Peng & Wu, Chunchi, 2024. "Volatility forecasts by clustering: Applications for VaR estimation," International Review of Economics & Finance, Elsevier, vol. 94(C).
- Jean-François Carpantier & Arnaud Dufays, 2012.
"Commodities volatility and the theory of storage,"
Working Papers
hal-01821149, HAL.
- CARPANTIER, Jean-François & DUFAYS, Arnaud, 2012. "Commodities volatility and the theory of storage," LIDAM Discussion Papers CORE 2012037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
More about this item
Keywords
Uncertainty-related internet searches; Precious metals markets; Volatility forecasts;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:62:y:2024:i:pb:s154461232400299x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.