IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2023-28.html
   My bibliography  Save this paper

The Effects of Volatility on Liquidity in the Treasury Market

Author

Abstract

We study the relationship between volatility and liquidity in the market for on-the-run Treasury securities using a novel framework for quantifying price impact. We show that at times of relatively low volatility, marginal trades that go with the flow of existing trades tend to have a smaller price impact than trades that go against the flow. However, this difference tends to diminish at times of high volatility, indicating that the perceived information content of going against the flow is less when volatility is high. We also show that market participants executing trades aggressively using market orders will experience larger increases in price impact than those executing trades passively using limit orders as volatility increases. And times of low market depth are associated with increased risk of high price impact and high sensitivity to volatility in future, perhaps because liquidity is more reliant on high-speed quote replenishment and is therefore more fragile.

Suggested Citation

  • Andrew C. Meldrum & Oleg Sokolinskiy, 2023. "The Effects of Volatility on Liquidity in the Treasury Market," Finance and Economics Discussion Series 2023-028, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2023-28
    DOI: 10.17016/FEDS.2023.028
    as

    Download full text from publisher

    File URL: https://www.federalreserve.gov/econres/feds/files/2023028pap.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.17016/FEDS.2023.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008. "Improving VWAP strategies: A dynamic volume approach," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
    2. Nguyen, Giang & Engle, Robert & Fleming, Michael & Ghysels, Eric, 2020. "Liquidity and volatility in the U.S. Treasury market," Journal of Econometrics, Elsevier, vol. 217(2), pages 207-229.
    3. Tarun Chordia & Richard Roll & Avanidhar Subrahmanyam, 2003. "Determinants of Daily Fluctuations in Liquidity and Trading Activity," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 40(121), pages 728-751.
    4. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
    5. Dobrislav Dobrev & Andrew C. Meldrum, 2020. "What Do Quoted Spreads Tell Us About Machine Trading at Times of Market Stress? Evidence from Treasury and FX Markets during the COVID-19-Related Market Turmoil in March 2020," FEDS Notes 2020-09-25, Board of Governors of the Federal Reserve System (U.S.).
    6. Christoph Frei & Nicholas Westray, 2015. "Optimal Execution Of A Vwap Order: A Stochastic Control Approach," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 612-639, July.
    7. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    8. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Szabolcs Mike, 2006. "Market efficiency and the long-memory of supply and demand: is price impact variable and permanent or fixed and temporary?," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 107-112.
    9. J. Doyne Farmer & Laszlo Gillemot & Fabrizio Lillo & Szabolcs Mike & Anindya Sen, 2004. "What really causes large price changes?," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 383-397.
    10. Korajczyk, Robert A. & Sadka, Ronnie, 2008. "Pricing the commonality across alternative measures of liquidity," Journal of Financial Economics, Elsevier, vol. 87(1), pages 45-72, January.
    11. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2019. "Price Discovery without Trading: Evidence from Limit Orders," Journal of Finance, American Finance Association, vol. 74(4), pages 1621-1658, August.
    12. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    13. Esteban Moro & Javier Vicente & Luis G. Moyano & Austin Gerig & J. Doyne Farmer & Gabriella Vaglica & Fabrizio Lillo & Rosario N. Mantegna, 2009. "Market impact and trading profile of large trading orders in stock markets," Papers 0908.0202, arXiv.org.
    14. Alex Aronovich & Dobrislav Dobrev & Andrew C. Meldrum, 2021. "The Treasury Market Flash Event of February 25, 2021," FEDS Notes 2021-05-14, Board of Governors of the Federal Reserve System (U.S.).
    15. Barclay, Michael J. & Warner, Jerold B., 1993. "Stealth trading and volatility : Which trades move prices?," Journal of Financial Economics, Elsevier, vol. 34(3), pages 281-305, December.
    16. Fraenkle, Jan & Rachev, Svetlozar (Zari) & Scherrer, Christian, 2011. "Market impact measurement of a VWAP trading algorithm," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 4(3), pages 254-274, June.
    17. Visser, Ingmar & Speekenbrink, Maarten, 2010. "depmixS4: An R Package for Hidden Markov Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i07).
    18. Pham, Manh Cuong & Anderson, Heather Margot & Duong, Huu Nhan & Lajbcygier, Paul, 2020. "The effects of trade size and market depth on immediate price impact in a limit order book market," Journal of Economic Dynamics and Control, Elsevier, vol. 120(C).
    19. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    2. Bence Toth & Imon Palit & Fabrizio Lillo & J. Doyne Farmer, 2011. "Why is order flow so persistent?," Papers 1108.1632, arXiv.org, revised Nov 2014.
    3. Tóth, Bence & Palit, Imon & Lillo, Fabrizio & Farmer, J. Doyne, 2015. "Why is equity order flow so persistent?," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 218-239.
    4. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    5. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    6. Damian Eduardo Taranto & Giacomo Bormetti & Fabrizio Lillo, 2014. "The adaptive nature of liquidity taking in limit order books," Papers 1403.0842, arXiv.org, revised Apr 2014.
    7. B. Tóth & Z. Eisler & F. Lillo & J. Kockelkoren & J.-P. Bouchaud & J.D. Farmer, 2012. "How does the market react to your order flow?," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1015-1024, May.
    8. Elia Zarinelli & Michele Treccani & J. Doyne Farmer & Fabrizio Lillo, 2014. "Beyond the square root: Evidence for logarithmic dependence of market impact on size and participation rate," Papers 1412.2152, arXiv.org.
    9. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    10. Bence Toth & Yves Lemperiere & Cyril Deremble & Joachim de Lataillade & Julien Kockelkoren & Jean-Philippe Bouchaud, 2011. "Anomalous price impact and the critical nature of liquidity in financial markets," Papers 1105.1694, arXiv.org, revised Nov 2011.
    11. Emilio Said & Ahmed Bel Hadj Ayed & Alexandre Husson & Fr'ed'eric Abergel, 2018. "Market Impact: A Systematic Study of Limit Orders," Papers 1802.08502, arXiv.org, revised May 2022.
    12. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    13. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    14. Emilio Said, 2022. "Market Impact: Empirical Evidence, Theory and Practice," Working Papers hal-03668669, HAL.
    15. Hussain, Syed Mujahid & Ahmad, Nisar & Ahmed, Sheraz, 2023. "Applications of high-frequency data in finance: A bibliometric literature review," International Review of Financial Analysis, Elsevier, vol. 89(C).
    16. Liwei Jin & Xianghui Yuan & Shihao Wang & Peiran Li & Feng Lian, 2022. "Trades or quotes: Which drives price discovery? Evidence from Chinese index futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2235-2247, December.
    17. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    18. Ferriani, Fabrizio, 2010. "Informed and uninformed traders at work: evidence from the French market," MPRA Paper 24487, University Library of Munich, Germany.
    19. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    20. Paolo Barucca & Fabrizio Lillo, 2017. "Behind the price: on the role of agent's reflexivity in financial market microstructure," Papers 1708.07047, arXiv.org.

    More about this item

    Keywords

    Liquidity; Treasury market; Market depth; Volatility; Order execution; Hidden Markov model;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2023-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.