IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v6y1999i1p37-48.html
   My bibliography  Save this article

Financial Modeling in a Fast Mean-Reverting Stochastic Volatility Environment

Author

Listed:
  • Jean-Pierre Fouque
  • George Papanicolaou
  • K. Sircar

Abstract

We present a derivative pricing and estimation methodology for a class of stochastic volatility models that exploits the observed 'bursty' or persistent nature of stock price volatility. Empirical analysis of high-frequency S&P 500 index data confirms that volatility reverts slowly to its mean in comparison to the tick-by- tick fluctuations of the index value, but it is fast mean- reverting when looked at over the time scale of a derivative contract (many months). This motivates an asymptotic analysis of the partial differential equation satisfied by derivative prices, utilizing the distinction between these time scales. The analysis yields pricing and implied volatility formulas, and the latter provides a simple procedure to 'fit the skew' from European index option prices. The theory identifies the important group parameters that are needed for the derivative pricing and hedging problem for European-style securities, namely the average volatility and the slope and intercept of the implied volatility line, plotted as a function of the log- moneyness-to-maturity-ratio. The results considerably simplify the estimation procedure. The remaining parameters, including the growth rate of the underlying, the correlation between asset price and volatility shocks, the rate of mean-reversion of the volatility and the market price of volatility risk are not needed for the asymptotic pricing formulas for European derivatives, and we derive the formula for a knock-out barrier option as an example. The extension to American and path-dependent contingent claims is the subject of future work. Copyright Kluwer Academic Publishers 1999

Suggested Citation

  • Jean-Pierre Fouque & George Papanicolaou & K. Sircar, 1999. "Financial Modeling in a Fast Mean-Reverting Stochastic Volatility Environment," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 6(1), pages 37-48, January.
  • Handle: RePEc:kap:apfinm:v:6:y:1999:i:1:p:37-48
    DOI: 10.1023/A:1010010626460
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1010010626460
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1010010626460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyo Yamamoto & Akihiko Takahashi, 2009. "A Remark on a Singular Perturbation Method for Option Pricing Under a Stochastic Volatility Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(4), pages 333-345, December.
    2. Collan, Mikael, 2004. "Giga-Investments: Modelling the Valuation of Very Large Industrial Real Investments," MPRA Paper 4328, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    2. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    3. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
    4. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    5. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    6. Lucchetti, Riccardo & Palomba, Giulio, 2009. "Nonlinear adjustment in US bond yields: An empirical model with conditional heteroskedasticity," Economic Modelling, Elsevier, vol. 26(3), pages 659-667, May.
    7. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.
    8. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
    9. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    10. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    11. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    12. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    13. Claudio Morana, 2004. "Frequency domain principal components estimation of fractionally cointegrated processes," Applied Economics Letters, Taylor & Francis Journals, vol. 11(13), pages 837-842.
    14. Per Bjarte Solibakke, 2003. "Validity of discrete-time stochastic volatility models in non-synchronous equity markets," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 420-448.
    15. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    16. Siem Jan Koopman & Neil Shephard, 2002. "Testing the Assumptions Behind the Use of Importance Sampling," Economics Papers 2002-W17, Economics Group, Nuffield College, University of Oxford.
    17. Amigues, Jean-Pierre & Favard, Pascal & Gaudet, Gerard & Moreaux, Michel, 1998. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute Is Limited," Journal of Economic Theory, Elsevier, vol. 80(1), pages 153-170, May.
    18. Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
    19. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    20. Celeux, Gilles & Marin, Jean-Michel & Robert, Christian P., 2006. "Iterated importance sampling in missing data problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3386-3404, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:6:y:1999:i:1:p:37-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.