IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v25y2014i06ns0129183114500120.html
   My bibliography  Save this article

A simple microstructure return model explaining microstructure noise and Epps effects

Author

Listed:
  • A. Saichev

    (Department of Management, ETH Zurich Technology and Economics, Scheuchzerstrasse 7, CH-8092 Zurich, Switzerland;
    Department of Mathematics, Nizhni Novgorod State University, Russia)

  • D. Sornette

    (Department of Management, ETH Zurich Technology and Economics, Scheuchzerstrasse 7, CH-8092 Zurich, Switzerland;
    Swiss Finance Institute, 40, Boulevard du Pont-d' Arve, Case Postale 3, 1211 Geneva 4, Switzerland)

Abstract

We present a novel simple microstructure model of financial returns that combines (i) the well-known ARFIMA process applied to tick-by-tick returns, (ii) the bid-ask bounce effect, (iii) the fat tail structure of the distribution of returns and (iv) the non-Poissonian statistics of inter-trade intervals. This model allows us to explain both qualitatively and quantitatively important stylized facts observed in the statistics of both microstructure and macrostructure returns, including the short-ranged correlation of returns, the long-ranged correlations of absolute returns, the microstructure noise and Epps effects. According to the microstructure noise effect, volatility is a decreasing function of the time-scale used to estimate it. The Epps effect states that cross correlations between asset returns are increasing functions of the time-scale at which the returns are estimated. The microstructure noise is explained as the result of the negative return correlations inherent in the definition of the bid-ask bounce component (ii). In the presence of a genuine correlation between the returns of two assets, the Epps effect is due to an average statistical overlap of the momentum of the returns of the two assets defined over a finite time-scale in the presence of the long memory process (i).

Suggested Citation

  • A. Saichev & D. Sornette, 2014. "A simple microstructure return model explaining microstructure noise and Epps effects," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(06), pages 1-36.
  • Handle: RePEc:wsi:ijmpcx:v:25:y:2014:i:06:n:s0129183114500120
    DOI: 10.1142/S0129183114500120
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183114500120
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183114500120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghysels, E. & Gourieroux, C. & Jasiak, J., 1995. "Market Time and Asset Price Movements: Theory and Estimation," Cahiers de recherche 9536, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    2. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "(Understanding, Optimizing, Using and Forecasting) Realized Volatility and Correlation," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-061, New York University, Leonard N. Stern School of Business-.
    4. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    5. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Trading Patterns, Time Deformation and Stochastic Volatility in Foreign Exchange Markets," CIRANO Working Papers 95s-42, CIRANO.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Chang & Roger Bukuru & Tim Gebbie, 2019. "Revisiting the Epps effect using volume time averaging: An exercise in R," Papers 1912.02416, arXiv.org, revised Feb 2020.
    2. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Malliavin-Mancino estimators implemented with non-uniform fast Fourier transforms," Papers 2003.02842, arXiv.org, revised Nov 2020.
    3. Filimonov, Vladimir & Sornette, Didier, 2015. "Power law scaling and “Dragon-Kings” in distributions of intraday financial drawdowns," Chaos, Solitons & Fractals, Elsevier, vol. 74(C), pages 27-45.
    4. Vladimir Filimonov & Didier Sornette, 2014. "Power law scaling and "Dragon-Kings" in distributions of intraday financial drawdowns," Papers 1407.5037, arXiv.org, revised Apr 2015.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.
    2. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    3. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    4. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    5. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    6. Ghysels, E. & Jasiak, J., 1994. "Stochastic Volatility and time Deformation: An Application of trading Volume and Leverage Effects," Cahiers de recherche 9403, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    7. Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014. "A Compound Multifractal Model for High-Frequency Asset Returns," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-05, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    8. Eric Ghysels & Joann Jasiak, 1997. "GARCH for Irregularly Spaced Data: The ACD-GARCH Model," CIRANO Working Papers 97s-06, CIRANO.
    9. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    10. Timothy DeLise, 2021. "Neural Options Pricing," Papers 2105.13320, arXiv.org.
    11. Victor Olkhov, 2023. "Market-Based Probability of Stock Returns," Papers 2302.07935, arXiv.org, revised Feb 2024.
    12. Michel Baroni & Fabrice Barthélémy & Mahdi Mokrane, 2008. "Is It Possible to Construct Derivatives for the Paris Residential Market?," The Journal of Real Estate Finance and Economics, Springer, vol. 37(3), pages 233-264, October.
    13. Thomas Theobald, 2015. "Agent-based risk management – a regulatory approach to financial markets," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 42(5), pages 780-820, October.
    14. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    15. Paul Eitelman & Justin Vitanza, 2008. "A non-random walk revisited: short- and long-term memory in asset prices," International Finance Discussion Papers 956, Board of Governors of the Federal Reserve System (U.S.).
    16. Katarzyna Bien & Ingmar Nolte & Winfried Pohlmeier, 2008. "A multivariate integer count hurdle model: theory and application to exchange rate dynamics," Studies in Empirical Economics, in: Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), High Frequency Financial Econometrics, pages 31-48, Springer.
    17. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    18. Amigues, Jean-Pierre & Favard, Pascal & Gaudet, Gerard & Moreaux, Michel, 1998. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute Is Limited," Journal of Economic Theory, Elsevier, vol. 80(1), pages 153-170, May.
    19. CARPANTIER, Jean - François, 2010. "Commodities inventory effect," LIDAM Discussion Papers CORE 2010040, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.

    More about this item

    Keywords

    High-frequency trading; micro-structure; Epps effect; long memory; momentum; JEL Classification: C32; JEL Classification: G17;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:25:y:2014:i:06:n:s0129183114500120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.