Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2021.04.003
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Alessandro Giovannelli & Tommaso Proietti & Ambra Citton & Ottavio Ricchi & Cristian Tegami & Cristina Tinti, 2020. "Nowcasting GDP and its Components in a Data-rich Environment: the Merits of the Indirect Approach," CEIS Research Paper 489, Tor Vergata University, CEIS, revised 30 May 2020.
References listed on IDEAS
- Ledoit, Olivier & Wolf, Michael, 2004.
"A well-conditioned estimator for large-dimensional covariance matrices,"
Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
- Ledoit, Olivier & Wolf, Michael, 2000. "A well conditioned estimator for large dimensional covariance matrices," DES - Working Papers. Statistics and Econometrics. WS 10087, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Forni, Mario & Lippi, Marco, 2001.
"The Generalized Dynamic Factor Model: Representation Theory,"
Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
- Lippi, Marco & Forni, Mario, 2000. "The Generalized Dynamic Factor Model: Representation Theory," CEPR Discussion Papers 2509, C.E.P.R. Discussion Papers.
- Tommaso Proietti & Alessandro Giovannelli, 2021.
"Nowcasting monthly GDP with big data: A model averaging approach,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 683-706, April.
- Tommaso Proietti & Alessandro Giovannelli, 2020. "Nowcasting Monthly GDP with Big Data: a Model Averaging Approach," CEIS Research Paper 482, Tor Vergata University, CEIS, revised 12 May 2020.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," Economics Working Papers ECO2009/32, European University Institute.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
- A. Espasa & E. Senra & R. Albacete, 2002.
"Forecasting inflation in the European Monetary Union: A disaggregated approach by countries and by sectors,"
The European Journal of Finance, Taylor & Francis Journals, vol. 8(4), pages 402-421.
- Senra, Eva & Albacete, Rebeca, 2001. "Forecasting inflation in the european monetary union: a disaggregated approach by countries and by sectors," DES - Working Papers. Statistics and Econometrics. WS ws013723, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Boivin, Jean & Ng, Serena, 2006.
"Are more data always better for factor analysis?,"
Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
- Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
- Hendry, David F. & Hubrich, Kirstin, 2011.
"Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
- David F. Hendry & Kirstin Hubrich, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 216-227, April.
- Hendry, David F. & Hubrich, Kirstin, 2010. "Combining disaggregate forecasts or combining disaggregate information to forecast an aggregate," Working Paper Series 1155, European Central Bank.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Laura Bisio & Filippo Moauro, 2018.
"Temporal disaggregation by dynamic regressions: Recent developments in Italian quarterly national accounts,"
Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 471-494, November.
- Bisio, Laura & Moauro, Filippo, 2017. "Temporal disaggregation by dynamic regressions: recent developments in Italian quarterly national accounts," MPRA Paper 80211, University Library of Munich, Germany, revised 14 Jul 2017.
- S. J. Koopman & J. Durbin, 2000.
"Fast Filtering and Smoothing for Multivariate State Space Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 21(3), pages 281-296, May.
- Koopman, S.J.M. & Durbin, J., 1998. "Fast Filtering and Smoothing for Multivariate State Space Models," Other publications TiSEM 3ca0d14b-21ad-427f-8631-e, Tilburg University, School of Economics and Management.
- Koopman, S.J.M. & Durbin, J., 1998. "Fast Filtering and Smoothing for Multivariate State Space Models," Discussion Paper 1998-18, Tilburg University, Center for Economic Research.
- Francisco Corona & Pilar Poncela & Esther Ruiz, 2020.
"Estimating Non-stationary Common Factors: Implications for Risk Sharing,"
Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
- Corona, Francisco & Poncela, Pilar, 2017. "Estimating non-stationary common factors : Implications for risk sharing," DES - Working Papers. Statistics and Econometrics. WS 24585, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009.
"Opening The Black Box: Structural Factor Models With Large Cross Sections,"
Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
- Mario Forni & Domenico Giannone & Marco Lippi & Lucrezia Reichlin, 2007. "Opening the Black Box: Structural Factor Models with Large Cross-Sections," Center for Economic Research (RECent) 008, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
- Mario Forni & Domenico Giannone & Marco Lippi & Lucrezia Reichlin, 2008. "Opening the Black Box: Structural Factor Models with Large Cross-Sections," Working Papers ECARES 2008_036, ULB -- Universite Libre de Bruxelles.
- Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2007. "Opening the black box: structural factor models with large cross-sections," Working Paper Series 712, European Central Bank.
- Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2017.
"Euromind‐ D : A Density Estimate of Monthly Gross Domestic Product for the Euro Area,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 683-703, April.
- Proietti, Tommaso & Marczak, Martyna & Mazzi, Gianluigi, 2015. "EuroMInd-D: A density estimate of monthly gross domestic product for the euro area," Hohenheim Discussion Papers in Business, Economics and Social Sciences 03-2015, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
- Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2015. "EuroMInd-D: A Density Estimate of Monthly Gross Domestic Product for the Euro Area," CREATES Research Papers 2015-12, Department of Economics and Business Economics, Aarhus University.
- Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2015. "EuroMInd-D: A Density Estimate of Monthly Gross Domestic Product for the Euro Area," CEIS Research Paper 340, Tor Vergata University, CEIS, revised 10 Apr 2015.
- Maximo Camacho & Gabriel Perez-Quiros, 2010.
"Introducing the euro-sting: Short-term indicator of euro area growth,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
- Maximo Camacho & Gabriel Perez-Quiros, 2008. "Introducing the EURO-STING: Short Term INdicator of Euro Area Growth," Working Papers 0807, Banco de España.
- Pérez-Quirós, Gabriel & Camacho, Máximo, 2009. "Introducing the Euro-STING: Short-Term Indicator of Euro Area Growth," CEPR Discussion Papers 7343, C.E.P.R. Discussion Papers.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014.
"Nowcasting GDP in Real Time: A Density Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000.
"The Generalized Dynamic-Factor Model: Identification And Estimation,"
The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018.
"Dynamic factor model with infinite‐dimensional factor space: Forecasting,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2016. "Dynamic Factor model with infinite dimensional factor space: forecasting," Center for Economic Research (RECent) 120, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
- Forni, Mario & Giovannelli, Alessandro & Lippi, Marco & Soccorsi, Stefano, 2016. "Dynamic Factor model with infinite dimensional factor space: forecasting," CEPR Discussion Papers 11161, C.E.P.R. Discussion Papers.
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2016. "Dynamic Factor Model with Infinite Dimensional Factor Space: Forecasting," Working Papers ECARES ECARES 2016-16, ULB -- Universite Libre de Bruxelles.
- Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, 2011. "EUROMIND: a monthly indicator of the euro area economic conditions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 439-470, April.
- Katja Heinisch & Rolf Scheufele, 2018.
"Bottom-up or direct? Forecasting German GDP in a data-rich environment,"
Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
- Katja Drechsel & Dr. Rolf Scheufele, 2012. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," Working Papers 2012-16, Swiss National Bank.
- Drechsel, Katja & Scheufele, Rolf, 2013. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," IWH Discussion Papers 7/2013, Halle Institute for Economic Research (IWH).
- Raffaella Giacomini & Barbara Rossi, 2010.
"Forecast comparisons in unstable environments,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
- Giacomini, Raffaella & Rossi, Barbara, 2008. "Forecast Comparisons in Unstable Environments," Working Papers 08-04, Duke University, Department of Economics.
- Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
- Hubrich, Kirstin, 2005.
"Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?,"
International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
- Hubrich, Kirstin, 2003. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," Working Paper Series 247, European Central Bank.
- Kirstin Hubrich, 2004. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," Computing in Economics and Finance 2004 230, Society for Computational Economics.
- Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Pilar Poncela & Antonio García‐Ferrer, 2014. "The Effects of Disaggregation on Forecasting Nonstationary Time Series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 300-314, July.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, October.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
- Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
- James Mitchell & Richard J. Smith & Martin R. Weale & Stephen Wright & Eduardo L. Salazar, 2005. "An Indicator of Monthly GDP and an Early Estimate of Quarterly GDP Growth," Economic Journal, Royal Economic Society, vol. 115(501), pages 108-129, February.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Christian Glocker & Serguei Kaniovski, 2022.
"Macroeconometric forecasting using a cluster of dynamic factor models,"
Empirical Economics, Springer, vol. 63(1), pages 43-91, July.
- Christian Glocker & Serguei Kaniovski, 2020. "Macroeconometric Forecasting Using a Cluster of Dynamic Factor Models," WIFO Working Papers 614, WIFO.
- Escribano, Alvaro & Peña, Daniel & Ruiz, Esther, 2021. "30 years of cointegration and dynamic factor models forecasting and its future with big data: Editorial," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1333-1337.
- Joan Paredes & Javier J. Pérez & Gabriel Perez Quiros, 2023.
"Fiscal targets. A guide to forecasters?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 472-492, June.
- Pérez-Quirós, Gabriel & Pérez, Javier J & Paredes, Joan, 2015. "Fiscal targets. A guide to forecasters?," CEPR Discussion Papers 10553, C.E.P.R. Discussion Papers.
- Pérez Quirós, Gabriel & Pérez, Javier J. & Paredes, Joan, 2015. "Fiscal targets. A guide to forecasters?," Working Paper Series 1834, European Central Bank.
- Joan Paredes & Javier J. Pérez & Gabriel Perez-Quirós, 2015. "Fiscal targets. A guide to forecasters?," Working Papers 1508, Banco de España.
- Stankevich, Ivan, 2023. "Application of Markov-Switching MIDAS models to nowcasting of GDP and its components," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 70, pages 122-143.
- Glocker, Christian & Kaniovski, Serguei, 2020. "Structural modeling and forecasting using a cluster of dynamic factor models," MPRA Paper 101874, University Library of Munich, Germany.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023.
"Testing big data in a big crisis: Nowcasting under Covid-19,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2022. "Testing big data in a big crisis: Nowcasting under COVID-19," Working Papers 2022-06, Joint Research Centre, European Commission.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tommaso Proietti & Alessandro Giovannelli, 2021.
"Nowcasting monthly GDP with big data: A model averaging approach,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 683-706, April.
- Tommaso Proietti & Alessandro Giovannelli, 2020. "Nowcasting Monthly GDP with Big Data: a Model Averaging Approach," CEIS Research Paper 482, Tor Vergata University, CEIS, revised 12 May 2020.
- Katja Heinisch & Rolf Scheufele, 2018.
"Bottom-up or direct? Forecasting German GDP in a data-rich environment,"
Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
- Katja Drechsel & Dr. Rolf Scheufele, 2012. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," Working Papers 2012-16, Swiss National Bank.
- Drechsel, Katja & Scheufele, Rolf, 2013. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," IWH Discussion Papers 7/2013, Halle Institute for Economic Research (IWH).
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021.
"Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
- Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Hallin, Marc, 2020. "Robustness and the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Textos para discussão 521, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013.
"Now-Casting and the Real-Time Data Flow,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237,
Elsevier.
- Reichlin, Lucrezia & Giannone, Domenico & Modugno, Michele & Banbura, Marta, 2012. "Now-casting and the real-time data flow," CEPR Discussion Papers 9112, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta & Modugno, Michele, 2013. "Now-casting and the real-time data flow," Working Paper Series 1564, European Central Bank.
- Martha Banbura & Domenico Giannone & Michèle Modugno & Lucrezia Reichlin, 2012. "Now-Casting and the Real-Time Data Flow," Working Papers ECARES ECARES 2012-026, ULB -- Universite Libre de Bruxelles.
- Carlos Cesar Trucios-Maza & João H. G Mazzeu & Luis K. Hotta & Pedro L. Valls Pereira & Marc Hallin, 2019. "On the robustness of the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Working Papers ECARES 2019-32, ULB -- Universite Libre de Bruxelles.
- Christian Glocker & Serguei Kaniovski, 2022.
"Macroeconometric forecasting using a cluster of dynamic factor models,"
Empirical Economics, Springer, vol. 63(1), pages 43-91, July.
- Christian Glocker & Serguei Kaniovski, 2020. "Macroeconometric Forecasting Using a Cluster of Dynamic Factor Models," WIFO Working Papers 614, WIFO.
- Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
- Rusnák, Marek, 2016.
"Nowcasting Czech GDP in real time,"
Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
- Marek Rusnak, 2013. "Nowcasting Czech GDP in Real Time," Working Papers 2013/06, Czech National Bank.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014.
"Dynamic factor models: A review of the literature,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2013. "Dynamic factor models: A review of the literature," Post-Print hal-01385974, HAL.
- Barhoumi, K. & Darné, O. & Ferrara, L., 2013. "Dynamic Factor Models: A review of the Literature ," Working papers 430, Banque de France.
- Alessandro Giovannelli & Marco Lippi & Tommaso Proietti, 2023.
"Band-Pass Filtering with High-Dimensional Time Series,"
Papers
2305.06618, arXiv.org.
- Alessandro Giovannelli & Marco Lippi & Tommaso Proietti, 2023. "Band-Pass Filtering with High-Dimensional Time Series," CEIS Research Paper 559, Tor Vergata University, CEIS, revised 15 Jun 2023.
- Paolo Andreini & Donato Ceci, 2019. "A Horse Race in High Dimensional Space," CEIS Research Paper 452, Tor Vergata University, CEIS, revised 14 Feb 2019.
- Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Economics Working Papers
ECO2013/02, European University Institute.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018.
"Dynamic factor model with infinite‐dimensional factor space: Forecasting,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2016. "Dynamic Factor model with infinite dimensional factor space: forecasting," Center for Economic Research (RECent) 120, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2016. "Dynamic Factor Model with Infinite Dimensional Factor Space: Forecasting," Working Papers ECARES ECARES 2016-16, ULB -- Universite Libre de Bruxelles.
- Forni, Mario & Giovannelli, Alessandro & Lippi, Marco & Soccorsi, Stefano, 2016. "Dynamic Factor model with infinite dimensional factor space: forecasting," CEPR Discussion Papers 11161, C.E.P.R. Discussion Papers.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Forni, Mario & Di Bonaventura, Luca & Pattarin, Francesco, 2018.
"The Forcasting Performance of Dynamic Factor Models with Vintage Data,"
CEPR Discussion Papers
13034, C.E.P.R. Discussion Papers.
- Luca Di Bonaventura & Mario Forni & Francesco Pattarin, 2018. "The Forecasting Performance of Dynamic Factor Models with Vintage Data," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0070, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
- Luca Di Bonaventura & Mario Forni & Francesco Pattarin, 2018. "The Forecasting Performance of Dynamic Factor Models with Vintage Data," Center for Economic Research (RECent) 138, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
- Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017.
"Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis,"
Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
- Pietro Dallari & Antonio Ribba, 2015. "Dynamic Factor Models with In nite-Dimensional Factor Space: Asymptotic Analysis," Center for Economic Research (RECent) 115, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
- Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2016. "Dynamic Factor Models with Infinite-Dimensional Factor Space. Asymptotic Analysis," EIEF Working Papers Series 1607, Einaudi Institute for Economics and Finance (EIEF), revised Apr 2016.
- Lippi, Marco & Hallin, Marc & Forni, Mario & Zaffaroni, Paolo, 2015. "Dynamic Factor Models with Infinite-Dimensional Factor Space: Asymptotic Analysis," CEPR Discussion Papers 10618, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2015. "Dynamic Factor Models with Infinite-Dimensional Factor Space: Asymptotic Analysis," Working Papers ECARES ECARES 2015-23, ULB -- Universite Libre de Bruxelles.
More about this item
Keywords
Mixed-frequency data; Dynamic factor models; Growth accounting; Model averaging; Ledoit–Wolf Shrinkage;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:37:y:2021:i:4:p:1376-1398. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.