IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v16y2012i3n5.html
   My bibliography  Save this article

A Nonlinear Filtering Algorithm based on Wavelet Transforms for High-Frequency Financial Data Analysis

Author

Listed:
  • Meinl Thomas

    (Karlsruhe Institute of Technology (KIT), Germany)

  • Sun Edward W.

    (BEM Bordeaux Management School, France)

Abstract

The increased availability of high-frequency financial data has imposed new challenges for its denoising analysis since the data exhibits heavy tails and long-memory effects that render the application of traditional methods difficult. In this paper, we introduce the local linear scaling approximation (in short, LLSA), which is a nonlinear filtering algorithm based on the linear maximal overlap discrete wavelet transform (MODWT). We show the unique properties of LLSA and compare its performance with MODWT. We empirically show the superior performance of LLSA in smoothing analysis (i.e., trend extraction) of high- frequency data from German equity market. Based on our results we conclude that LLSA is reliable and suitable for high-frequency data denoising analysis.

Suggested Citation

  • Meinl Thomas & Sun Edward W., 2012. "A Nonlinear Filtering Algorithm based on Wavelet Transforms for High-Frequency Financial Data Analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-24, September.
  • Handle: RePEc:bpj:sndecm:v:16:y:2012:i:3:n:5
    DOI: 10.1515/1558-3708.1920
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1558-3708.1920
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1558-3708.1920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Edward W. & Rezania, Omid & Rachev, Svetlozar T. & Fabozzi, Frank J., 2011. "Analysis of the intraday effects of economic releases on the currency market," Journal of International Money and Finance, Elsevier, vol. 30(4), pages 692-707, June.
    2. Sun, Edward W. & Meinl, Thomas, 2012. "A new wavelet-based denoising algorithm for high-frequency financial data mining," European Journal of Operational Research, Elsevier, vol. 217(3), pages 589-599.
    3. Tkacz Greg, 2001. "Estimating the Fractional Order of Integration of Interest Rates Using a Wavelet OLS Estimator," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(1), pages 1-15, April.
    4. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    5. Kim Sangbae & In Francis Haeuck, 2003. "The Relationship Between Financial Variables and Real Economic Activity: Evidence From Spectral and Wavelet Analyses," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(4), pages 1-18, December.
    6. Ghysels, Eric, 2000. "Some Econometric Recipes for High-Frequency Data Cooking," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 154-163, April.
    7. Gallegati Marco & Gallegati Mauro, 2007. "Wavelet Variance Analysis of Output in G-7 Countries," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(3), pages 1-25, September.
    8. Yongmiao Hong & Chihwa Kao, 2004. "Wavelet-Based Testing for Serial Correlation of Unknown Form in Panel Models," Econometrica, Econometric Society, vol. 72(5), pages 1519-1563, September.
    9. Sun, Wei & Rachev, Svetlozar & Fabozzi, Frank J., 2007. "Fractals or I.I.D.: Evidence of long-range dependence and heavy tailedness from modeling German equity market returns," Journal of Economics and Business, Elsevier, vol. 59(6), pages 575-595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Fu-Lai & Yang, Sheng-Yung & Marsh, Terry & Chen, Yu-Fen, 2018. "Stock and bond return relations and stock market uncertainty: Evidence from wavelet analysis," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 285-294.
    2. Yi-Ting Chen & Wan-Ni Lai & Edward W. Sun, 2019. "Jump Detection and Noise Separation by a Singular Wavelet Method for Predictive Analytics of High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 809-844, August.
    3. Yi-Ting Chen & Edward W. Sun & Min-Teh Yu, 2018. "Risk Assessment with Wavelet Feature Engineering for High-Frequency Portfolio Trading," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 653-684, August.
    4. Syed Jawad Hussain Shahzad & Jose Arreola‐Hernandez & Md Lutfur Rahman & Gazi Salah Uddin & Muhammad Yahya, 2021. "Asymmetric interdependence between currency markets' volatilities across frequencies and time scales," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2436-2457, April.
    5. Chen, Mei-Ping & Chen, Wen-Yi & Tseng, Tseng-Chan, 2017. "Co-movements of returns in the health care sectors from the US, UK, and Germany stock markets: Evidence from the continuous wavelet analyses," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 484-498.
    6. Chen Yi-Ting & Sun Edward W. & Yu Min-Teh, 2015. "Improving model performance with the integrated wavelet denoising method," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 445-467, September.
    7. Sun, Edward W. & Chen, Yi-Ting & Yu, Min-Teh, 2015. "Generalized optimal wavelet decomposing algorithm for big financial data," International Journal of Production Economics, Elsevier, vol. 165(C), pages 194-214.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    2. Yi-Ting Chen & Edward W. Sun & Min-Teh Yu, 2018. "Risk Assessment with Wavelet Feature Engineering for High-Frequency Portfolio Trading," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 653-684, August.
    3. Chen Yi-Ting & Sun Edward W. & Yu Min-Teh, 2015. "Improving model performance with the integrated wavelet denoising method," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 445-467, September.
    4. Sun, Edward W. & Meinl, Thomas, 2012. "A new wavelet-based denoising algorithm for high-frequency financial data mining," European Journal of Operational Research, Elsevier, vol. 217(3), pages 589-599.
    5. Lin, Fu-Lai & Yang, Sheng-Yung & Marsh, Terry & Chen, Yu-Fen, 2018. "Stock and bond return relations and stock market uncertainty: Evidence from wavelet analysis," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 285-294.
    6. Sun, Edward W. & Chen, Yi-Ting & Yu, Min-Teh, 2015. "Generalized optimal wavelet decomposing algorithm for big financial data," International Journal of Production Economics, Elsevier, vol. 165(C), pages 194-214.
    7. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    8. Monira Essa Aloud, 2016. "Time Series Analysis Indicators under Directional Changes: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 55-64.
    9. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    10. Crowley, Patrick M., 2005. "An intuitive guide to wavelets for economists," Bank of Finland Research Discussion Papers 1/2005, Bank of Finland.
    11. Veredas, David & Rodríguez Poo, Juan M., 2001. "On the (intradaily) seasonality and dynamics of a financial point process: a semiparametric approach," DES - Working Papers. Statistics and Econometrics. WS ws013321, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    13. Rua, António & Nunes, Luis C., 2012. "A wavelet-based assessment of market risk: The emerging markets case," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 84-92.
    14. Yusoff, Yuzlizawati & Masih, Mansur, 2014. "Comovement of East and West Stock Market Indexes," MPRA Paper 58872, University Library of Munich, Germany.
    15. Patrick Crowley, 2005. "An intuitive guide to wavelets for economists," Econometrics 0503017, University Library of Munich, Germany.
    16. Francis In & Sangbae Kim, 2012. "An Introduction to Wavelet Theory in Finance:A Wavelet Multiscale Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8431, August.
    17. Yi-Ting Chen & Wan-Ni Lai & Edward W. Sun, 2019. "Jump Detection and Noise Separation by a Singular Wavelet Method for Predictive Analytics of High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 809-844, August.
    18. Conlon, Thomas & Cotter, John & Gençay, Ramazan, 2018. "Long-run wavelet-based correlation for financial time series," European Journal of Operational Research, Elsevier, vol. 271(2), pages 676-696.
    19. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2019. "Coherent quality management for big data systems: a dynamic approach for stochastic time consistency," Annals of Operations Research, Springer, vol. 277(1), pages 3-32, June.
    20. Giovanni De Luca & Paola Zuccolotto, 2003. "Finite and infinite mixtures for financial durations," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 431-455.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:16:y:2012:i:3:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.