IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01090833.html
   My bibliography  Save this paper

Detecting jumps and regime-switches in international stock markets returns

Author

Listed:
  • Julien Chevallier

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

  • Stéphane Goutte

    (BF - Banque-Finance - LED - Laboratoire d'Economie Dionysien - UP8 - Université Paris 8 Vincennes-Saint-Denis)

Abstract

This paper explores seven international stock markets (DJIA, Euro STOXX 600, Russell 2000, Nikkei, NASDAQ, FTSE, Global Dow) in the quest for jumps and regime-switches. The methodological framework borrows from the Markov-switching approach and the stochastic modelling literature based on Lévy processes. The econometric procedure is detailed in a two-step fashion. The dataset covers the period from June 2004 to July 2014. The main results uncover changing market dynamics according to economic and/or financial phenomena (e.g., economic crises/growth, news events) with the occurrence of several episodes characterized by a high jump intensity. We advocate the use of such a jump-robust model modulated by a Markov chain to further study the dependence structure of financial time series.

Suggested Citation

  • Julien Chevallier & Stéphane Goutte, 2014. "Detecting jumps and regime-switches in international stock markets returns," Working Papers hal-01090833, HAL.
  • Handle: RePEc:hal:wpaper:hal-01090833
    Note: View the original document on HAL open archive server: https://hal.science/hal-01090833
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01090833/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stéphane Goutte & Benteng Zou, 2012. "Continuous time regime switching model applied to foreign exchange rate," Working Papers hal-00643900, HAL.
    2. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    3. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
    4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    5. Goutte, Stéphane, 2014. "Conditional Markov regime switching model applied to economic modelling," Economic Modelling, Elsevier, vol. 38(C), pages 258-269.
    6. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    7. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    8. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    9. James D. Hamilton & Baldev Raj, 2002. "New directions in business cycle research and financial analysis," Empirical Economics, Springer, vol. 27(2), pages 149-162.
    10. Julien Chevallier & Florian Ielpo, 2014. "Twenty years of jumps in commodity markets," International Review of Applied Economics, Taylor & Francis Journals, vol. 28(1), pages 64-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asante Gyamerah, Samuel & Ngare, Philip & Ikpe, Dennis, 2018. "A Levy Regime-Switching Temperature Dynamics Model for Weather Derivatives," MPRA Paper 89680, University Library of Munich, Germany, revised 10 Jul 2018.
    2. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    3. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    4. Andrea Bucci & Vito Ciciretti, 2021. "Market Regime Detection via Realized Covariances: A Comparison between Unsupervised Learning and Nonlinear Models," Papers 2104.03667, arXiv.org.
    5. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raphaël Homayoun Boroumand & Stéphane Goutte & Simon Porcher & Thomas Porcher, 2014. "A Conditional Markov Regime Switching Model to Study Margins: Application to the French Fuel Retail Markets," Working Papers hal-01090837, HAL.
    2. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    3. Boroumand, Raphaël Homayoun & Goutte, Stéphane & Porcher, Simon & Porcher, Thomas, 2016. "Asymmetric evidence of gasoline price responses in France: A Markov-switching approach," Economic Modelling, Elsevier, vol. 52(PB), pages 467-476.
    4. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    5. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    6. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    7. Chernov, Mikhail & Graveline, Jeremy & Zviadadze, Irina, 2018. "Crash Risk in Currency Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(1), pages 137-170, February.
    8. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    9. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    10. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    11. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    12. Manabu Asai & Michael McAleer, 2017. "The impact of jumps and leverage in forecasting covolatility," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 638-650, October.
    13. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    14. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
    15. Benoît Sévi & César Baena, 2013. "The explanatory power of signed jumps for the risk-return tradeoff," Economics Bulletin, AccessEcon, vol. 33(2), pages 1029-1046.
    16. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    17. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    18. Maheu, John M. & McCurdy, Thomas H. & Zhao, Xiaofei, 2013. "Do jumps contribute to the dynamics of the equity premium?," Journal of Financial Economics, Elsevier, vol. 110(2), pages 457-477.
    19. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01090833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.