Forecasting CPI with multisource data: The value of media and internet information
Author
Abstract
Suggested Citation
DOI: 10.1002/for.3048
Download full text from publisher
References listed on IDEAS
- Gary Koop & Dimitris Korobilis, 2012.
"Forecasting Inflation Using Dynamic Model Averaging,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
- Gary Koop & Dimitris Korobilis, 2009. "Forecasting Inflation Using Dynamic Model Averaging," Working Paper series 34_09, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
- Koop, Gary & Korobilis, Dimitris, 2011. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2011-40, Scottish Institute for Research in Economics (SIRE).
- Koop, Gary & Korobilis, Dimitris, 2010. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2010-113, Scottish Institute for Research in Economics (SIRE).
- Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
- Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017.
"The role of indicator selection in nowcasting euro-area GDP in pseudo-real time,"
Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
- A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Chernis, Tony & Cheung, Calista & Velasco, Gabriella, 2020.
"A three-frequency dynamic factor model for nowcasting Canadian provincial GDP growth,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 851-872.
- Tony Chernis & Calista Cheung & Gabriella Velasco, 2017. "A Three-Frequency Dynamic Factor Model for Nowcasting Canadian Provincial GDP Growth," Discussion Papers 17-8, Bank of Canada.
- James H. Stock & Mark W.Watson, 2003.
"Forecasting Output and Inflation: The Role of Asset Prices,"
Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
- James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
- James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
- Leif Anders Thorsrud, 2020.
"Words are the New Numbers: A Newsy Coincident Index of the Business Cycle,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
- Leif Anders Thorsrud, 2016. "Words are the new numbers: A newsy coincident index of business cycles," Working Papers No 4/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Leif Anders Thorsrud, 2016. "Words are the new numbers: A newsy coincident index of business cycles," Working Paper 2016/21, Norges Bank.
- George Milunovich, 2020. "Forecasting Australia's real house price index: A comparison of time series and machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1098-1118, November.
- Matteo Luciani & Madhavi Pundit & Arief Ramayandi & Giovanni Veronese, 2018.
"Nowcasting Indonesia,"
Empirical Economics, Springer, vol. 55(2), pages 597-619, September.
- Luciani, Matteo & Pundit, Madhavi & Ramayandi, Arief & Veronese , Giovanni, 2015. "Nowcasting Indonesia," ADB Economics Working Paper Series 471, Asian Development Bank.
- Matteo Luciani & Madhavi Pundit & Arief Ramayandi & Giovanni Veronese, 2015. "Nowcasting Indonesia," Finance and Economics Discussion Series 2015-100, Board of Governors of the Federal Reserve System (U.S.).
- Paul Krugman, 1986. "Pricing to Market when the Exchange Rate Changes," NBER Working Papers 1926, National Bureau of Economic Research, Inc.
- Galbraith, John W. & Tkacz, Greg, 2018. "Nowcasting with payments system data," International Journal of Forecasting, Elsevier, vol. 34(2), pages 366-376.
- Tony Chernis & Rodrigo Sekkel, 2017.
"A dynamic factor model for nowcasting Canadian GDP growth,"
Empirical Economics, Springer, vol. 53(1), pages 217-234, August.
- Tony Chernis & Rodrigo Sekkel, 2017. "A Dynamic Factor Model for Nowcasting Canadian GDP Growth," Staff Working Papers 17-2, Bank of Canada.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.
- Paolo Fornaro & Henri Luomaranta, 2020. "Nowcasting Finnish real economic activity: a machine learning approach," Empirical Economics, Springer, vol. 58(1), pages 55-71, January.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- James T. E. Chapman & Ajit Desai, 2023.
"Macroeconomic Predictions Using Payments Data and Machine Learning,"
Forecasting, MDPI, vol. 5(4), pages 1-32, November.
- James T. E. Chapman & Ajit Desai, 2022. "Macroeconomic Predictions using Payments Data and Machine Learning," Papers 2209.00948, arXiv.org.
- James Chapman & Ajit Desai, 2022. "Macroeconomic Predictions Using Payments Data and Machine Learning," Staff Working Papers 22-10, Bank of Canada.
- James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
- Erik Christian Montes Schütte, 2018. "In Search of a Job: Forecasting Employment Growth in the US using Google Trends," CREATES Research Papers 2018-25, Department of Economics and Business Economics, Aarhus University.
- Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Caroline Jardet & Baptiste Meunier, 2022.
"Nowcasting world GDP growth with high‐frequency data,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
- Jardet Caroline & Meunier Baptiste, 2020. "Nowcasting World GDP Growth with High-Frequency Data," Working papers 788, Banque de France.
- Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Post-Print hal-03647097, HAL.
- Lu, Fei & Ma, Feng & Bouri, Elie & Liao, Yin, 2024. "Do commodity futures have a steering effect on the spot stock market in China? New evidence from volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
- Boriss Siliverstovs, 2017.
"Short-term forecasting with mixed-frequency data: a MIDASSO approach,"
Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
- Boriss Siliverstovs, 2015. "Short-term forecasting with mixed-frequency data: A MIDASSO approach," KOF Working papers 15-375, KOF Swiss Economic Institute, ETH Zurich.
- V. Candila & O. Cepni & G. M. Gallo & R. Gupta, 2024.
"Influence of Local and Global Economic Policy Uncertainty on the volatility of US state-level equity returns: Evidence from a GARCH-MIDAS approach with Shrinkage and Cluster Analysis,"
Working Paper CRENoS
202414, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Vincenzo Candila & Oguzhan Cepni & Giampiero M. Gallo & Rangan Gupta, 2024. "Influence of Local and Global Economic Policy Uncertainty on the Volatility of US State-Level Equity Returns: Evidence from a GARCH-MIDAS Approach with Shrinkage and Cluster Analysis," Working Papers 202437, University of Pretoria, Department of Economics.
- Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2023. "Which COVID-19 information really impacts stock markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023.
"A Machine Learning Approach to Volatility Forecasting,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021. "A machine learning approach to volatility forecasting," CREATES Research Papers 2021-03, Department of Economics and Business Economics, Aarhus University.
- Ching Hsu & Tina Yu & Shu-Heng Chen, 2021. "Narrative economics using textual analysis of newspaper data: new insights into the U.S. Silver Purchase Act and Chinese price level in 1928–1936," Journal of Computational Social Science, Springer, vol. 4(2), pages 761-785, November.
- Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020.
"A Scoring Rule for Factor and Autoregressive Models Under Misspecification,"
Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
- Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," International Association of Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
- Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Domenico Sartore, 2018. "A scoring rule for factor and autoregressive models under misspecification," Working Papers 2018:18, Department of Economics, University of Venice "Ca' Foscari".
- Shafiullah Qureshi & Ba Chu & Fanny S. Demers, 2021. "Forecasting Canadian GDP Growth with Machine Learning," Carleton Economic Papers 21-05, Carleton University, Department of Economics.
- Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
- Daniel Borup & Erik Christian Montes Schütte, 2022.
"In Search of a Job: Forecasting Employment Growth Using Google Trends,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
- Daniel Borup & Erik Christian Montes Schütte, 2019. "In search of a job: Forecasting employment growth using Google Trends," CREATES Research Papers 2019-13, Department of Economics and Business Economics, Aarhus University.
- Ashton de Silva & Maria Yanotti & Sarah Sinclair & Sveta Angelopoulos, 2023. "Place‐Based Policies and Nowcasting," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 56(3), pages 363-370, September.
- Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:3:p:702-753. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.