IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/123659.html
   My bibliography  Save this paper

Sequential learning and economic benefits from dynamic term structure models

Author

Listed:
  • Dubiel-Teleszynski, Tomasz
  • Kalogeropoulos, Konstantinos
  • Karouzakis, Nikolaos

Abstract

We explore the statistical and economic importance of restrictions on the dynamics of risk compensation from the perspective of a real-time Bayesian learner who predicts bond excess returns using dynamic term structure models (DTSMs). The question on whether potential statistical predictability offered by such models can generate economically significant portfolio benefits out-of-sample is revisited while imposing restrictions on their risk premia parameters. To address this question, we propose a methodological framework that successfully handles sequential model search and parameter estimation over the restriction space in real time, allowing investors to revise their beliefs when new information arrives, thus informing their asset allocation and maximizing their expected utility. Empirical results reinforce the argument of sparsity in the market price of risk specification since we find strong evidence of out-of-sample predictability only for those models that allow for level risk to be priced and, additionally, only one or two of these risk premia parameters to be different than zero. Most importantly, such statistical evidence is turned into economically significant utility gains, across prediction horizons, different time periods and portfolio specifications. In addition to identifying successful DTSMs, the sequential version of the stochastic search variable selection scheme developed can be applied on its own and offer useful diagnostics monitoring key quantities over time. Connections with predictive regressions are also provided.

Suggested Citation

  • Dubiel-Teleszynski, Tomasz & Kalogeropoulos, Konstantinos & Karouzakis, Nikolaos, 2024. "Sequential learning and economic benefits from dynamic term structure models," LSE Research Online Documents on Economics 123659, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:123659
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/123659/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Della Corte, Pasquale & Sarno, Lucio & Thornton, Daniel L., 2008. "The expectation hypothesis of the term structure of very short-term rates: Statistical tests and economic value," Journal of Financial Economics, Elsevier, vol. 89(1), pages 158-174, July.
    2. Daniel L. Thornton & Giorgio Valente, 2012. "Out-of-Sample Predictions of Bond Excess Returns and Forward Rates: An Asset Allocation Perspective," The Review of Financial Studies, Society for Financial Studies, vol. 25(10), pages 3141-3168.
    3. Alexander Dawid & Monica Musio, 2014. "Theory and applications of proper scoring rules," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 169-183, August.
    4. Scott Joslin & Kenneth J. Singleton & Haoxiang Zhu, 2011. "A New Perspective on Gaussian Dynamic Term Structure Models," The Review of Financial Studies, Society for Financial Studies, vol. 24(3), pages 926-970.
    5. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    6. Scott Joslin & Marcel Priebsch & Kenneth J. Singleton, 2014. "Risk Premiums in Dynamic Term Structure Models with Unspanned Macro Risks," Journal of Finance, American Finance Association, vol. 69(3), pages 1197-1233, June.
    7. Martin M Andreasen & Tom Engsted & Stig V Møller & Magnus Sander & Stijn Van Nieuwerburgh, 2021. "The Yield Spread and Bond Return Predictability in Expansions and Recessions," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2773-2812.
    8. Jonathan H. Wright, 2011. "Term Premia and Inflation Uncertainty: Empirical Evidence from an International Panel Dataset," American Economic Review, American Economic Association, vol. 101(4), pages 1514-1534, June.
    9. Dewachter, Hans & Lyrio, Marco, 2006. "Macro Factors and the Term Structure of Interest Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(1), pages 119-140, February.
    10. Bruno Feunou & Jean-Sébastien Fontaine, 2018. "Bond Risk Premia and Gaussian Term Structure Models," Management Science, INFORMS, vol. 64(3), pages 1413-1439, March.
    11. Orphanides, Athanasios & Wei, Min, 2012. "Evolving macroeconomic perceptions and the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 239-254.
    12. Adrian, Tobias & Crump, Richard K. & Moench, Emanuel, 2013. "Pricing the term structure with linear regressions," Journal of Financial Economics, Elsevier, vol. 110(1), pages 110-138.
    13. Cheridito, Patrick & Filipovic, Damir & Kimmel, Robert L., 2007. "Market price of risk specifications for affine models: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 83(1), pages 123-170, January.
    14. repec:dau:papers:123456789/5671 is not listed on IDEAS
    15. Hamilton, James D. & Wu, Jing Cynthia, 2012. "Identification and estimation of Gaussian affine term structure models," Journal of Econometrics, Elsevier, vol. 168(2), pages 315-331.
    16. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    17. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    18. Wan, Runqing & Fulop, Andras & Li, Junye, 2022. "Real-time Bayesian learning and bond return predictability," Journal of Econometrics, Elsevier, vol. 230(1), pages 114-130.
    19. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
    20. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    21. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    22. Chib, Siddhartha & Ergashev, Bakhodir, 2009. "Analysis of Multifactor Affine Yield Curve Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1324-1337.
    23. John Y. Campbell & Robert J. Shiller, 1991. "Yield Spreads and Interest Rate Movements: A Bird's Eye View," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 495-514.
    24. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    25. Anna Cieslak & Pavol Povala, 2015. "Expected Returns in Treasury Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 28(10), pages 2859-2901.
    26. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    27. Gregory R. Duffee & Richard H. Stanton, 2012. "Estimation of Dynamic Term Structure Models," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-51.
    28. Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
    29. Ang, Andrew & Longstaff, Francis A., 2013. "Systemic sovereign credit risk: Lessons from the U.S. and Europe," Journal of Monetary Economics, Elsevier, vol. 60(5), pages 493-510.
    30. Michael D. Bauer & James D. Hamilton, 2018. "Robust Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 399-448.
    31. E Fong & C C Holmes, 2020. "On the marginal likelihood and cross-validation," Biometrika, Biometrika Trust, vol. 107(2), pages 489-496.
    32. Gregory R. Duffee, 2011. "Information in (and not in) the Term Structure," The Review of Financial Studies, Society for Financial Studies, vol. 24(9), pages 2895-2934.
    33. Ajay Jasra & David A. Stephens & Arnaud Doucet & Theodoros Tsagaris, 2011. "Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 1-22, March.
    34. Eric Ghysels & Casidhe Horan & Emanuel Moench, 2018. "Forecasting through the Rearview Mirror: Data Revisions and Bond Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 678-714.
    35. Marco Giacoletti & Kristoffer T. Laursen & Kenneth J. Singleton, 2021. "Learning From Disagreement in the U.S. Treasury Bond Market," Journal of Finance, American Finance Association, vol. 76(1), pages 395-441, February.
    36. Kim, Don H. & Singleton, Kenneth J., 2012. "Term structure models and the zero bound: An empirical investigation of Japanese yields," Journal of Econometrics, Elsevier, vol. 170(1), pages 32-49.
    37. Jefferson Duarte, 2004. "Evaluating an Alternative Risk Preference in Affine Term Structure Models," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 379-404.
    38. Anna Cieslak, 2018. "Short-Rate Expectations and Unexpected Returns in Treasury Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 31(9), pages 3265-3306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Berardi & Michael Markovich & Alberto Plazzi & Andrea Tamoni, 2021. "Mind the (Convergence) Gap: Bond Predictability Strikes Back!," Management Science, INFORMS, vol. 67(12), pages 7888-7911, December.
    2. Jing-Zhi Huang & Zhan Shi, 2023. "Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance," Management Science, INFORMS, vol. 69(3), pages 1780-1804, March.
    3. Zhang, Han & Guo, Bin & Liu, Lanbiao, 2022. "The time-varying bond risk premia in China," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 51-76.
    4. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," SIRE Discussion Papers 2015-71, Scottish Institute for Research in Economics (SIRE).
    5. Doshi, Hitesh & Jacobs, Kris & Liu, Rui, 2018. "Macroeconomic determinants of the term structure: Long-run and short-run dynamics," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 99-122.
    6. Michael D. Bauer & Glenn D. Rudebusch, 2020. "Interest Rates under Falling Stars," American Economic Review, American Economic Association, vol. 110(5), pages 1316-1354, May.
    7. Li, Junye & Sarno, Lucio & Zinna, Gabriele, 2024. "Risks and risk premia in the US Treasury market," Journal of Economic Dynamics and Control, Elsevier, vol. 158(C).
    8. Christos Ioannidis & Kook Ka, 2021. "Economic Policy Uncertainty and Bond Risk Premia," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(6), pages 1479-1522, September.
    9. Rui Liu, 2019. "Forecasting Bond Risk Premia with Unspanned Macroeconomic Information," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-62, March.
    10. Feng Zhao & Guofu Zhou & Xiaoneng Zhu, 2021. "Unspanned Global Macro Risks in Bond Returns," Management Science, INFORMS, vol. 67(12), pages 7825-7843, December.
    11. Shuo Cao, 2018. "Learning about Term Structure Predictability under Uncertainty," GRU Working Paper Series GRU_2018_006, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    12. Chiarella, Carl & Hsiao, Chih-Ying & Tô, Thuy-Duong, 2016. "Stochastic correlation and risk premia in term structure models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 59-78.
    13. Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Management Science, INFORMS, vol. 65(2), pages 508-540, February.
    14. Hitesh Doshi & Kris Jacobs & Rui Liu, 2021. "Information in the Term Structure: A Forecasting Perspective," Management Science, INFORMS, vol. 67(8), pages 5255-5277, August.
    15. Christensen, Bent Jesper & van der Wel, Michel, 2019. "An asset pricing approach to testing general term structure models," Journal of Financial Economics, Elsevier, vol. 134(1), pages 165-191.
    16. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-71, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    17. Peter Feldhütter, 2016. "Can Affine Models Match the Moments in Bond Yields?," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-56, June.
    18. Liu, Yan & Wu, Jing Cynthia, 2021. "Reconstructing the yield curve," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1395-1425.
    19. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2016. "The economic value of predicting bond risk premia," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 247-267.
    20. Berardi, Andrea & Plazzi, Alberto, 2022. "Dissecting the yield curve: The international evidence," Journal of Banking & Finance, Elsevier, vol. 134(C).

    More about this item

    Keywords

    parameter & model uncertainty; bond return predictability; economic value; dynamic term structure models; Bayesian sequential learning;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:123659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.