IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0501015.html
   My bibliography  Save this paper

Overlaying Time Scales in Financial Volatility Data

Author

Listed:
  • Eric Hillebrand

    (Louisiana State University, Department of Economics)

Abstract

Apart from the well-known, high persistence of daily financial volatility data, there is also a short correlation structure that reverts to the mean in less than a month. We find this short correlation time scale in six different daily financial time series and use it to improve the short-term forecasts from GARCH models. We study different generalizations of GARCH that allow for several time scales. On our holding sample, none of the considered models can fully exploit the information contained in the short scale. Wavelet analysis shows a correlation between fluctuations on long and on short scales. Models accounting for this correlation as well as long memory models for absolute returns appear to be promising.

Suggested Citation

  • Eric Hillebrand, 2005. "Overlaying Time Scales in Financial Volatility Data," Econometrics 0501015, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpem:0501015
    Note: Type of Document - pdf; pages: 40
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0501/0501015.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    2. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew Lorig, 2010. "Time-Changed Fast Mean-Reverting Stochastic Volatility Models," Papers 1010.5203, arXiv.org, revised Apr 2012.
    2. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    3. Jean-Pierre Fouque & Sebastian Jaimungal & Matthew Lorig, 2010. "Spectral Decomposition of Option Prices in Fast Mean-Reverting Stochastic Volatility Models," Papers 1007.4361, arXiv.org, revised Apr 2012.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    2. Anders Tolver Jensen & Theis Lange, 2009. "On IGARCH and convergence of the QMLE for misspecified GARCH models," CREATES Research Papers 2009-06, Department of Economics and Business Economics, Aarhus University.
    3. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    4. David McMillan & Alan Speight, 2006. "Heterogeneous information flows and intra-day volatility dynamics: evidence from the UK FTSE-100 stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 16(13), pages 959-972.
    5. Hiremath, Gourishankar S & Bandi, Kamaiah, 2010. "Long Memory in Stock Market Volatility:Evidence from India," MPRA Paper 48519, University Library of Munich, Germany.
    6. Babikir, Ali & Gupta, Rangan & Mwabutwa, Chance & Owusu-Sekyere, Emmanuel, 2012. "Structural breaks and GARCH models of stock return volatility: The case of South Africa," Economic Modelling, Elsevier, vol. 29(6), pages 2435-2443.
    7. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    8. Yusaku Nishimura & Yoshiro Tsutsui & Kenjiro Hirayama, 2016. "The Chinese Stock Market Does not React to the Japanese Market: Using Intraday Data to Analyse Return and Volatility Spillover Effects," The Japanese Economic Review, Springer, vol. 67(3), pages 280-294, September.
    9. John W. Galbraith & Victoria Zinde-Walsh, 2000. "Properties of Estimates of Daily GARCH Parameters Based on Intra-Day Observations," Econometric Society World Congress 2000 Contributed Papers 1800, Econometric Society.
    10. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    11. Gil-Alana, Luis A. & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2014. "On the persistence and volatility in European, American and Asian stocks bull and bear markets," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 149-162.
    12. Jian Zhou & Zhixin Kang, 2011. "A Comparison of Alternative Forecast Models of REIT Volatility," The Journal of Real Estate Finance and Economics, Springer, vol. 42(3), pages 275-294, April.
    13. Adnen Ben Nasr & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Modelling the volatility of the Dow Jones Islamic Market World Index using a fractionally integrated time-varying GARCH (FITVGARCH) model," Applied Financial Economics, Taylor & Francis Journals, vol. 24(14), pages 993-1004, July.
    14. Feng, Yuanhua & McNeil, Alexander J., 2008. "Modelling of scale change, periodicity and conditional heteroskedasticity in return volatility," Economic Modelling, Elsevier, vol. 25(5), pages 850-867, September.
    15. Naeem, Muhammad & Shahbaz, Muhammad & Saleem, Kashif & Mustafa, Faisal, 2019. "Risk analysis of high frequency precious metals returns by using long memory model," Resources Policy, Elsevier, vol. 61(C), pages 399-409.
    16. Wang, Yuanfang & Roberts, Matthew C., 2005. "Realized Volatility in the Agricultural Futures Market," 2005 Annual meeting, July 24-27, Providence, RI 19211, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    17. da Silva, Afonso Gonçalves & Robinson, Peter M., 2008. "Fractional Cointegration In Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1207-1253, October.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    19. van Mierlo, J.G.A., 2001. "Over de verhouding tussen overheid, marktwerking en privatisering. Een economische meta-analyse," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    20. John Cotter, 2005. "Uncovering long memory in high frequency UK futures," The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 325-337.

    More about this item

    Keywords

    GARCH; volatility persistence; spurious high persistence; long memory; fractional integration; change-points; wavelets; time scales;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0501015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.