IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v42y2021i6p25-48.html
   My bibliography  Save this article

Oil Price Volatility is Effective in Predicting Food Price Volatility. Or is it?

Author

Listed:
  • Ioannis Chatziantoniou
  • Stavros Degiannakis
  • George Filis
  • Tim Lloyd

Abstract

Volatility spillovers between food commodities and oil prices have been identified in the literature, yet, there has been no empirical evidence to suggest that oil price volatility improves real out-of-sample forecasts of food price volatility. In this study we provide new evidence showing that oil price volatility does not improve forecasts of agricultural price volatility. This finding is based on extensive and rigorous testing of five internationally traded agricultural commodities (soybeans, corn, sugar, rough rice and wheat) and two oil benchmarks (Brent and WTI). We employ monthly and daily oil and food price volatility data and two forecasting frameworks, namely, the HAR and MIDAS-HAR, for the period 2nd January 1990 until 31st March 2017. Results indicate that oil volatility-enhanced HAR or MI-DAS-HAR models cannot systematically outperform the standard HAR model. Thus, contrary to what has been suggested by the existing literature based on in-sample analysis, we are unable to find any systematic evidence that oil price volatility improves out-of-sample forecasts of food price volatility. The results remain robust to the choice of different out-of-sample forecasting periods and three different volatility measures

Suggested Citation

  • Ioannis Chatziantoniou & Stavros Degiannakis & George Filis & Tim Lloyd, 2021. "Oil Price Volatility is Effective in Predicting Food Price Volatility. Or is it?," The Energy Journal, , vol. 42(6), pages 25-48, November.
  • Handle: RePEc:sae:enejou:v:42:y:2021:i:6:p:25-48
    DOI: 10.5547/01956574.42.6.icha
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.42.6.icha
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.42.6.icha?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    2. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    3. Fengping Tian & Ke Yang & Langnan Chen, 2017. "Realized Volatility Forecasting of Agricultural Commodity Futures Using Long Memory and Regime Switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(4), pages 421-430, July.
    4. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    5. Teresa Serra & José M. Gil, 2013. "Price volatility in food markets: can stock building mitigate price fluctuations?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 40(3), pages 507-528, July.
    6. Dimos S. Kambouroudis & David G. McMillan & Katerina Tsakou, 2016. "Forecasting Stock Return Volatility: A Comparison of GARCH, Implied Volatility, and Realized Volatility Models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(12), pages 1127-1163, December.
    7. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    8. Anthony N. Rezitis, 2015. "The relationship between agricultural commodity prices, crude oil prices and US dollar exchange rates: a panel VAR approach and causality analysis," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(3), pages 403-434, May.
    9. Harri, Ardian & Nalley, Lanier & Hudson, Darren, 2009. "The Relationship between Oil, Exchange Rates, and Commodity Prices," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 41(2), pages 501-510, August.
    10. Algieri, Bernardina & Leccadito, Arturo, 2017. "Assessing contagion risk from energy and non-energy commodity markets," Energy Economics, Elsevier, vol. 62(C), pages 312-322.
    11. Feng Wu & Zhengfei Guan & Robert J. Myers, 2011. "Volatility spillover effects and cross hedging in corn and crude oil futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(11), pages 1052-1075, November.
    12. Marc F. Bellemare, 2015. "Rising Food Prices, Food Price Volatility, and Social Unrest," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 1-21.
    13. Zhang, Chuanguo & Liu, Feng & Yu, Danlin, 2018. "Dynamic jumps in global oil price and its impacts on China's bulk commodities," Energy Economics, Elsevier, vol. 70(C), pages 297-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Forecasting the realized volatility of agricultural commodity prices: Does sentiment matter?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2088-2125, September.
    2. Rangan Gupta & Christian Pierdzioch, 2024. "Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices," Mathematics, MDPI, vol. 12(18), pages 1-26, September.
    3. Wu, Lan & Xu, Weiju & Huang, Dengshi & Li, Pan, 2022. "Does the volatility spillover effect matter in oil price volatility predictability? Evidence from high-frequency data," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 299-306.
    4. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2024. "Financial stress and realized volatility: The case of agricultural commodities," Research in International Business and Finance, Elsevier, vol. 71(C).
    5. Matteo Bonato & Oğuzhan Çepni & Rangan Gupta & Christian Pierdzioch, 2023. "El Niño, La Niña, and forecastability of the realized variance of agricultural commodity prices: Evidence from a machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 785-801, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    2. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    3. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    4. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    5. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
    6. Dimitrios P. Louzis & Spyros Xanthopoulos-Sisinis & Apostolos P. Refenes, 2012. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Applied Economics, Taylor & Francis Journals, vol. 44(27), pages 3533-3550, September.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    8. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    9. Todorova, Neda & Souček, Michael, 2014. "The impact of trading volume, number of trades and overnight returns on forecasting the daily realized range," Economic Modelling, Elsevier, vol. 36(C), pages 332-340.
    10. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    11. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.
    12. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    13. Amir Safari & Detlef Seese, 2010. "Behavior of realized volatility and correlation in exchange markets," International Econometric Review (IER), Econometric Research Association, vol. 2(2), pages 73-96, September.
    14. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
    15. Robin de Vilder & Marcel P. Visser, 2007. "Proxies for daily volatility," Working Papers halshs-00588307, HAL.
    16. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    17. Degiannakis, Stavros & Filis, George, 2023. "Oil price assumptions for macroeconomic policy," Energy Economics, Elsevier, vol. 117(C).
    18. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022. "Forecasting realized volatility of agricultural commodities," International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
    19. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
    20. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:42:y:2021:i:6:p:25-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.