IDEAS home Printed from https://ideas.repec.org/a/qnt/quantl/y2007i2p131-140.html
   My bibliography  Save this article

Long range dependence and the purchasing power parity (in Russian)

Author

Listed:
  • Oleg Obrezkov

    (VRG Investments, Russia)

Abstract

The aim of this paper is to explore the purchasing power parity between the United States and Japan. This is done indirectly by estimating fractional integration orders of the aggregate price series in the two countries and nominal and real exchange rates. Our results suggest that both nominal and real exchange rates are well described by conventional I(1)-processes whereas both US and Japan's price levels are around I(1.46). The latter result comes into contradiction with the traditional view that aggregate price series are usually second-order integrated processes. The point estimate of the fractional integration order for the log-difference in price levels in the US and Japan yields the figure 1.33 which is (statistically) smaller than the order 1.46 obtained for the aggregate price series. The latter result may be considered as a (very weak) evidence of the purchasing power parity property: the fractional order of the ratio of the price levels is smaller than that for each price level.

Suggested Citation

  • Oleg Obrezkov, 2007. "Long range dependence and the purchasing power parity (in Russian)," Quantile, Quantile, issue 2, pages 131-140, March.
  • Handle: RePEc:qnt:quantl:y:2007:i:2:p:131-140
    as

    Download full text from publisher

    File URL: http://quantile.ru/02/02-OO.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    3. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    4. Juselius, Katarina, 1995. "Do purchasing power parity and uncovered interest rate parity hold in the long run? An example of likelihood inference in a multivariate time-series model," Journal of Econometrics, Elsevier, vol. 69(1), pages 211-240, September.
    5. John Y. Campbell & N. Gregory Mankiw, 1987. "Are Output Fluctuations Transitory?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 857-880.
    6. Ghysels, Eric, 1990. "Unit-Root Tests and the Statistical Pitfalls of Seasonal Adjustment: The Case of U.S. Postwar Real Gross National Product," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 145-152, April.
    7. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    8. Cheung, Yin-Wong, 1993. "Long Memory in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 93-101, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    2. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    3. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    4. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    5. Michelacci, Claudio & Zaffaroni, Paolo, 2000. "(Fractional) beta convergence," Journal of Monetary Economics, Elsevier, vol. 45(1), pages 129-153, February.
    6. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    7. Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
    8. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    9. J. Eduardo Vera‐Valdés, 2020. "On long memory origins and forecast horizons," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 811-826, August.
    10. Benjamin J. C. Kim & David Karemera, 2006. "Assessing the forecasting accuracy of alternative nominal exchange rate models: the case of long memory," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 369-380.
    11. Baillie, R. & Chung, C. & Tieslau, M., 1992. "The Long Memory and Variability of Inflation : A Reappraisal of the Friedman Hypothesis," Other publications TiSEM 49a709f4-608f-43c5-840b-c, Tilburg University, School of Economics and Management.
    12. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    13. Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020. "The economic importance of rare earth elements volatility forecasts," International Review of Financial Analysis, Elsevier, vol. 71(C).
    14. Joseph G. Haubrich & Andrew W. Lo, "undated". "The Sources and Nature of Long-Term Memory in the Business Cycle," Rodney L. White Center for Financial Research Working Papers 5-89, Wharton School Rodney L. White Center for Financial Research.
    15. Gil-Alana, Luis A. & Carcel, Hector, 2020. "A fractional cointegration var analysis of exchange rate dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    16. José Manuel Belbute & Alfredo Marvão Pereira, 2016. "Does final energy demand in Portugal exhibit long memory? A fractional integration analysis," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 15(2), pages 59-77, August.
    17. Baillie, Richard T & Bollerslev, Tim, 1994. "Cointegration, Fractional Cointegration, and Exchange Rate Dynamics," Journal of Finance, American Finance Association, vol. 49(2), pages 737-745, June.
    18. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2014. "Structural breaks and long memory in modeling and forecasting volatility of foreign exchange markets of oil exporters: The importance of scheduled and unscheduled news announcements," International Review of Economics & Finance, Elsevier, vol. 30(C), pages 101-119.
    19. Guglielmo Maria Caporale & Luis A. Gil-Alana, 2020. "Modelling Loans to Non-Financial Corporations within the Eurozone: A Long-Memory Approach," CESifo Working Paper Series 8674, CESifo.
    20. Diebold, Francis X & Husted, Steven & Rush, Mark, 1991. "Real Exchange Rates under the Gold Standard," Journal of Political Economy, University of Chicago Press, vol. 99(6), pages 1252-1271, December.

    More about this item

    Keywords

    purchasing power parity; exchange rates; fractional integration;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • F41 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Open Economy Macroeconomics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qnt:quantl:y:2007:i:2:p:131-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Anatolyev (email available below). General contact details of provider: http://quantile.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.