IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v29y2024i3p2722-2739.html
   My bibliography  Save this article

An unrestricted MIDAS ordered logit model with applications to credit ratings

Author

Listed:
  • Cuixia Jiang
  • Tingting Zhao
  • Qifa Xu
  • Dan Hu

Abstract

The ordered logit (OLogit) model is a regression model for an ordinal dependent variable. For a conventional time series OLogit model, both the dependent variable and the independent variables are required to be observed at the same frequency. However, this requirement is violated under the circumstance of mixed frequency data. To this end, we introduce the unrestricted MIDAS (U‐MIDAS) method into the OLogit model and develop a novel U‐MIDAS‐OLogit model, in which high‐frequency covariates are used to predict a low‐frequency outcome with ordinal categories. The U‐MIDAS‐OLogit model enlarges the application of OLogit and enables to produce timely forecast. To verify its effectiveness, we conduct extensive Monte Carlo simulations. The numerical results show that the U‐MIDAS‐OLogit model is superior to several typical OLogit models in terms of prediction performance. We then apply the U‐MIDAS‐OLogit model to predict credit ratings of listed companies in China and the US, respectively. The empirical results also confirm its promising in practical applications.

Suggested Citation

  • Cuixia Jiang & Tingting Zhao & Qifa Xu & Dan Hu, 2024. "An unrestricted MIDAS ordered logit model with applications to credit ratings," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2722-2739, July.
  • Handle: RePEc:wly:ijfiec:v:29:y:2024:i:3:p:2722-2739
    DOI: 10.1002/ijfe.2801
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2801
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael A. Thornton, 2019. "Exact Discrete Representations of Linear Continuous Time Models with Mixed Frequency Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 951-967, November.
    2. David A. Ziebart & Sara A. Reiter, 1992. "Bond ratings, bond yields and financial information," Contemporary Accounting Research, John Wiley & Sons, vol. 9(1), pages 252-282, September.
    3. Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
    4. Antonio Afonso & Pedro Gomes & Philipp Rother, 2009. "Ordered response models for sovereign debt ratings," Applied Economics Letters, Taylor & Francis Journals, vol. 16(8), pages 769-773.
    5. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    6. Wan, Alan T.K. & Zhang, Xinyu & Wang, Shouyang, 2014. "Frequentist model averaging for multinomial and ordered logit models," International Journal of Forecasting, Elsevier, vol. 30(1), pages 118-128.
    7. Jiang, Cuixia & Xiong, Wei & Xu, Qifa & Liu, Yezheng, 2021. "Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty," Finance Research Letters, Elsevier, vol. 38(C).
    8. Ashbaugh-Skaife, Hollis & Collins, Daniel W. & LaFond, Ryan, 2006. "The effects of corporate governance on firms' credit ratings," Journal of Accounting and Economics, Elsevier, vol. 42(1-2), pages 203-243, October.
    9. Nikoleta Anesti & Ana Beatriz Galvão & Silvia Miranda‐Agrippino, 2022. "Uncertain Kingdom: Nowcasting Gross Domestic Product and its revisions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 42-62, January.
    10. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    11. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    12. Byeongchan Seong & Sung K. Ahn & Peter A. Zadrozny, 2013. "Estimation of vector error correction models with mixed-frequency data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(2), pages 194-205, March.
    13. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
    14. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    15. Sanjeev Bhojraj & Partha Sengupta, 2003. "Effect of Corporate Governance on Bond Ratings and Yields: The Role of Institutional Investors and Outside Directors," The Journal of Business, University of Chicago Press, vol. 76(3), pages 455-476, July.
    16. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goldmann, Leonie & Crook, Jonathan & Calabrese, Raffaella, 2024. "A new ordinal mixed-data sampling model with an application to corporate credit rating levels," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1111-1126.
    2. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016. "Testing for Granger causality with mixed frequency data," Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
    3. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    4. Ghysels, Eric & Qian, Hang, 2019. "Estimating MIDAS regressions via OLS with polynomial parameter profiling," Econometrics and Statistics, Elsevier, vol. 9(C), pages 1-16.
    5. Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Working Papers 2232, Banco de España.
    6. Marie Bessec, 2019. "Revisiting the transitional dynamics of business cycle phases with mixed-frequency data," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
    7. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    8. Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
    9. Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
    10. Nava, Consuelo R. & Osti, Linda & Zoia, Maria Grazia, 2022. "Forecasting Domestic Tourism across Regional Destinations through MIDAS Regressions," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202207, University of Turin.
    11. Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
    12. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.
    13. David DeBoskey & Peter Gillett, 2013. "The impact of multi-dimensional corporate transparency on us firms’ credit ratings and cost of capital," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 101-134, January.
    14. Xue, Fei & Wang, Xin & Xie, Yan & Zhang, Weihua, 2022. "Does CEO's early life experience affect corporate bond yield spread? Evidence from China's great famine," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 1012-1024.
    15. Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
    16. Mahmut Gunay, 2018. "Nowcasting Annual Turkish GDP Growth with MIDAS," CBT Research Notes in Economics 1810, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    17. Lahiri, Kajal & Yang, Cheng, 2022. "Boosting tax revenues with mixed-frequency data in the aftermath of COVID-19: The case of New York," International Journal of Forecasting, Elsevier, vol. 38(2), pages 545-566.
    18. Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
    19. Julián Alonso Cárdenas-Cárdenas & Edgar Caicedo-García & Eliana R. González Molano, 2020. "Estimación de la variación del precio de los alimentos con modelos de frecuencias mixtas," Borradores de Economia 1109, Banco de la Republica de Colombia.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:29:y:2024:i:3:p:2722-2739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.