Bayesian Inference for the Mixed-Frequency VAR Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
- John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
- Christopher A. Sims, 1993.
"A Nine-Variable Probabilistic Macroeconomic Forecasting Model,"
NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 179-212,
National Bureau of Economic Research, Inc.
- Christopher A. Sims, 1989. "A nine variable probabilistic macroeconomic forecasting model," Discussion Paper / Institute for Empirical Macroeconomics 14, Federal Reserve Bank of Minneapolis.
- Christopher A. Sims, 1992. "A Nine Variable Probabilistic Macroeconomic Forecasting Model," Cowles Foundation Discussion Papers 1034, Cowles Foundation for Research in Economics, Yale University.
- Tommaso Proietti & Filippo Moauro, 2006.
"Dynamic factor analysis with non‐linear temporal aggregation constraints,"
Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 281-300, April.
- Tommaso Proietti & Filippo Moauro, 2004. "Dynamic Factor Analysis with Nonlinear Temporal Aggregation Constraints," Econometrics 0401003, University Library of Munich, Germany.
- James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
- Peter A. Zadrozny, 1990. "Estimating A Multivariate Arma Model with Mixed-Frequency Data: An Application to Forecasting U.S. GNP at Monthly Intervals," Working Papers 90-5, Center for Economic Studies, U.S. Census Bureau.
- Ivan Jeliazkov & Rui Liu, 2010. "A model-based ranking of U.S. recessions," Economics Bulletin, AccessEcon, vol. 30(3), pages 2289-2296.
- Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
- Koop, Gary & Korobilis, Dimitris, 2010.
"Bayesian Multivariate Time Series Methods for Empirical Macroeconomics,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
- Gary Koop & Dimitris Korobilis, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Working Paper series 47_09, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," MPRA Paper 20125, University Library of Munich, Germany.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," Economics Working Papers ECO2009/32, European University Institute.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
- Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
- Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, August.
- Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Robertson, John C & Tallman, Ellis W, 2001. "Improving Federal-Funds Rate Forecasts in VAR Models Used for Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 324-330, July.
- Sylvia Fruhwirth-Schnatter, 2004. "Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 143-167, June.
- Sims, Christopher A & Zha, Tao, 1998.
"Bayesian Methods for Dynamic Multivariate Models,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
- Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," FRB Atlanta Working Paper 96-13, Federal Reserve Bank of Atlanta.
- Kadiyala, K Rao & Karlsson, Sune, 1997.
"Numerical Methods for Estimation and Inference in Bayesian VAR-Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
- Kadiyala, K. Rao & Karlsson, Sune, 1994. "Numerical Aspects of Bayesian VAR-modeling," SSE/EFI Working Paper Series in Economics and Finance 12, Stockholm School of Economics.
- repec:dau:papers:123456789/3692 is not listed on IDEAS
- Pierre Guérin & Massimiliano Marcellino, 2013.
"Markov-Switching MIDAS Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
- Marcellino, Massimiliano, 2011. "Markov-switching MIDAS models," CEPR Discussion Papers 8234, C.E.P.R. Discussion Papers.
- Konstantin A. KHOLODILIN, 2001. "Markov-Switching Common Dynamic Factor Model with Mixed-Frequency Data," LIDAM Discussion Papers IRES 2001020, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
- Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(1), pages 108-124, April.
- Hamilton, James D., 2011.
"Calling recessions in real time,"
International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
- James D. Hamilton, 2010. "Calling Recessions in Real Time," NBER Working Papers 16162, National Bureau of Economic Research, Inc.
- Yasutomo Murasawa & Roberto S. Mariano, 2004.
"Constructing a Coincident Index of Business Cycles Without Assuming a One-Factor Model,"
Econometric Society 2004 Far Eastern Meetings
710, Econometric Society.
- Roberto S. Mariano & Yasutomo Murasawa, 2004. "Constructing a Coincident Index of Business Cycles without Assuming a One-factor Model," Working Papers 22-2004, Singapore Management University, School of Economics, revised Oct 2004.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- repec:dau:papers:123456789/6069 is not listed on IDEAS
- Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, April.
- Stephen Goldfeld & Richard Quandt, 1973. "The Estimation of Structural Shifts by Switching Regressions," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 2, number 4, pages 475-485, National Bureau of Economic Research, Inc.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Working Paper
2013/06, Norges Bank.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
- Qian, Hang, 2012. "Essays on statistical inference with imperfectly observed data," ISU General Staff Papers 201201010800003618, Iowa State University, Department of Economics.
- Yasutomo Murasawa, 2016. "The Beveridge–Nelson decomposition of mixed-frequency series," Empirical Economics, Springer, vol. 51(4), pages 1415-1441, December.
- Seong, Byeongchan, 2020. "Smoothing and forecasting mixed-frequency time series with vector exponential smoothing models," Economic Modelling, Elsevier, vol. 91(C), pages 463-468.
- Qian, Hang, 2013. "Vector Autoregression with Mixed Frequency Data," MPRA Paper 47856, University Library of Munich, Germany.
- Qian, Hang, 2016. "A computationally efficient method for vector autoregression with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 433-437.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015.
"Markov-switching mixed-frequency VAR models,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
- Marcellino, Massimiliano & Foroni, Claudia, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
- Koop, Gary & Korobilis, Dimitris, 2010.
"Bayesian Multivariate Time Series Methods for Empirical Macroeconomics,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
- Gary Koop & Dimitris Korobilis, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Working Paper series 47_09, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," MPRA Paper 20125, University Library of Munich, Germany.
- Karlsson, Sune, 2013.
"Forecasting with Bayesian Vector Autoregression,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897,
Elsevier.
- Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
- Guérin, Pierre & Leiva-Leon, Danilo, 2017.
"Model averaging in Markov-switching models: Predicting national recessions with regional data,"
Economics Letters, Elsevier, vol. 157(C), pages 45-49.
- Guérin, Pierre & Leiva-Leon, Danilo, 2014. "Model Averaging in Markov-Switching Models: Predicting National Recessions with Regional Data," MPRA Paper 59361, University Library of Munich, Germany.
- Pierre Guérin & Danilo Leiva-Leon, 2015. "Model Averaging in Markov-Switching Models: Predicting National Recessions with Regional Data," Staff Working Papers 15-24, Bank of Canada.
- Pierre Guérin & Danilo Leiva-Leon, 2017. "Model averaging in markov-switching models: predicting national recessions with regional data," Working Papers 1727, Banco de España.
- Grace Lee, 2011.
"Aggregate shocks decomposition for eight East Asian countries,"
Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 16(2), pages 215-232.
- Grace H.Y. Lee, 2009. "Aggregate Shocks Decomposition For Eight East Asian Countries," Monash Economics Working Papers 17-09, Monash University, Department of Economics.
- Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008.
"Methods for inference in large multiple-equation Markov-switching models,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
- Christopher A. Sims & Daniel F. Waggoner & Tao Zha, 2006. "Methods for inference in large multiple-equation Markov-switching models," FRB Atlanta Working Paper 2006-22, Federal Reserve Bank of Atlanta.
- Tomasz Wozniak, 2016. "Rare Events and Risk Perception: Evidence from Fukushima Accident," Department of Economics - Working Papers Series 2021, The University of Melbourne.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Economics Working Papers
ECO2013/02, European University Institute.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
- Sergey V. Smirnov & Nikolay V. Kondrashov & Anna V. Petronevich, 2017.
"Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 53-73, May.
- Sergey V. Smirnov & Nikolai V. Kondrashov & Anna V. Petronevich, 2016. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," HSE Working papers WP BRP 122/EC/2016, National Research University Higher School of Economics.
- Sergey Smirnov & Nikolay Kondrashov & Anna Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Post-Print hal-01692230, HAL.
- Sergey Smirnov & Nikolay Kondrashov & Anna Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01692230, HAL.
- Vitor Castro, 2015.
"The Portuguese business cycle: chronology and duration dependence,"
Empirical Economics, Springer, vol. 49(1), pages 325-342, August.
- Vítor Castro, 2011. "The Portuguese Business Cycle: Chronology and Duration Dependence," NIPE Working Papers 11/2011, NIPE - Universidade do Minho.
- Vitor Castro, 2011. "The Portuguese Business Cycle: Chronology and Duration Dependence," GEMF Working Papers 2011-07, GEMF, Faculty of Economics, University of Coimbra.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013.
"Now-Casting and the Real-Time Data Flow,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237,
Elsevier.
- Reichlin, Lucrezia & Giannone, Domenico & Modugno, Michele & Banbura, Marta, 2012. "Now-casting and the real-time data flow," CEPR Discussion Papers 9112, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta & Modugno, Michele, 2013. "Now-casting and the real-time data flow," Working Paper Series 1564, European Central Bank.
- Martha Banbura & Domenico Giannone & Michèle Modugno & Lucrezia Reichlin, 2012. "Now-Casting and the Real-Time Data Flow," Working Papers ECARES ECARES 2012-026, ULB -- Universite Libre de Bruxelles.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016.
"Common Drifting Volatility in Large Bayesian VARs,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2012. "Common Drifting Volatility in Large Bayesian VARs," CEPR Discussion Papers 8894, C.E.P.R. Discussion Papers.
- Andrea CARRIERO & Todd E. CLARK & Massimiliano MARCELLINO, 2012. "Common Drifting Volatility in Large Bayesian VARs," Economics Working Papers ECO2012/08, European University Institute.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Common drifting volatility in large Bayesian VARs," Working Papers (Old Series) 1206, Federal Reserve Bank of Cleveland.
- Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2020.
"Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1092-1110, July.
- Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2019. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Working Paper 2019/2, Norges Bank.
- Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2019. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Working Papers No 01/2019, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
More about this item
Keywords
Markov mixture models; Label switching; Bayesian VAR; Mixed frequencies;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
- E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
- E51 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Money Supply; Credit; Money Multipliers
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2011-11-14 (Econometrics)
- NEP-ETS-2011-11-14 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1172. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.