IDEAS home Printed from https://ideas.repec.org/p/mar/magkse/201648.html
   My bibliography  Save this paper

Intraday volatility, trading volume and trading intensity in the interbank market e-MID

Author

Listed:
  • Markus Engler

    (University of Kassel)

  • Vahidin Jeleskovic

    (University of Kassel)

Abstract

We apply a multivariate multiplicative error model (MMEM) and investigate effects in the simultaneous processes of high-frequency return volatilities, trading volume, and trading intensities on the Italien Electronic Interbank Credit Market (e-MID). Analysing five minutes data from the Italian interbank market (e-MID), we found that volatilities, volumes and trading intensities on electronic Interbank Credit Market share strong causal relationship resulting in highly significant estimates of MMEM. In addition, we run several estimations to observe a change in the market behaviour of the e-MID during the last financial crisis. The main results of our study are the usability of high-frequency data models for the analysis of interbank credit market data. Moreover, we find out that changes in the market behaviour occur during the crisis. Before the financial crises, liquidity variables have a negative influence on the volatility, in contrast to the time period after the outbrake of the financial turmoil. To our best knowledge, our paper presents the first empirical application of MMEM to an interbank credit market.

Suggested Citation

  • Markus Engler & Vahidin Jeleskovic, 2016. "Intraday volatility, trading volume and trading intensity in the interbank market e-MID," MAGKS Papers on Economics 201648, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
  • Handle: RePEc:mar:magkse:201648
    as

    Download full text from publisher

    File URL: https://www.uni-marburg.de/fb02/makro/forschung/magkspapers/paper_2016/48-2016_engler.pdf
    File Function: First 201648
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raddant, Matthias, 2014. "Structure in the Italian overnight loan market," Journal of International Money and Finance, Elsevier, vol. 41(C), pages 197-213.
    2. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    3. de Masi, G. & Iori, G. & Caldarelli, G., 2006. "A fitness model for the Italian interbank money market," Working Papers 06/08, Department of Economics, City University London.
    4. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Nguyen, Giang & Engle, Robert & Fleming, Michael & Ghysels, Eric, 2020. "Liquidity and volatility in the U.S. Treasury market," Journal of Econometrics, Elsevier, vol. 217(2), pages 207-229.
    6. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    7. Gaspar, Vitor & Pérez-Quirós, Gabriel & Rodriguez Mendizabal, Hugo, 2004. "Interest Rate Determination in the Interbank Market," CEPR Discussion Papers 4516, C.E.P.R. Discussion Papers.
    8. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    9. Harris, Lawrence E, 1994. "Minimum Price Variations, Discrete Bid-Ask Spreads, and Quotation Sizes," The Review of Financial Studies, Society for Financial Studies, vol. 7(1), pages 149-178.
    10. Silvia Gabrieli, 2010. "The functioning of the European interbank market during the 2007-08 financial crisis," CEIS Research Paper 158, Tor Vergata University, CEIS, revised 28 May 2010.
    11. Iori, G. & Kapar, B. & Olmo, J., 2012. "The Cross-Section of Interbank Rates: A Nonparametric Empirical Investigation," Working Papers 12/03, Department of Economics, City University London.
    12. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    13. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    14. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    15. Angelo Baglioni & Andrea Monticini, 2008. "The Intraday Price of Money: Evidence from the e‐MID Interbank Market," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(7), pages 1533-1540, October.
    16. Gabbi, G. & Germano, G. & Hatzopoulos, V. & Iori, G. & Politi, M., 2012. "Market microstructure, bank's behaviour and interbank spreads," Working Papers 12/06, Department of Economics, City University London.
    17. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    18. Paolo Angelini & Andrea Nobili & Cristina Picillo, 2011. "The Interbank Market after August 2007: What Has Changed, and Why?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(5), pages 923-958, August.
    19. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.
    20. Mistrulli, Paolo Emilio, 2011. "Assessing financial contagion in the interbank market: Maximum entropy versus observed interbank lending patterns," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1114-1127, May.
    21. Claudio Porzio & Francesca Battaglia & Antonio Meles & Maria Grazia Starita, 2010. "Financial Turmoil and Asymmetric Information Theory: Evidence from the e-Mid Platform," Palgrave Macmillan Studies in Banking and Financial Institutions, in: Franco Fiordelisi & Philip Molyneux & Daniele Previati (ed.), New Issues in Financial and Credit Markets, chapter 2, pages 29-40, Palgrave Macmillan.
    22. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    23. Celso Brunetti & Mario di Filippo & Jeffrey H. Harris, 2011. "Effects of Central Bank Intervention on the Interbank Market During the Subprime Crisis," The Review of Financial Studies, Society for Financial Studies, vol. 24(6), pages 2053-2083.
    24. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    25. Iori, Giulia & Renò, Roberto & De Masi, Giulia & Caldarelli, Guido, 2007. "Trading strategies in the Italian interbank market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 467-479.
    26. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    27. Engle, Robert F. & Russell, Jeffrey R., 1997. "Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 187-212, June.
    28. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    29. Baglioni, Angelo & Monticini, Andrea, 2010. "The intraday interest rate under a liquidity crisis: The case of August 2007," Economics Letters, Elsevier, vol. 107(2), pages 198-200, May.
    30. Fricke, Daniel, 2012. "Trading strategies in the overnight money market: Correlations and clustering on the e-MID trading platform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6528-6542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anastasios Demertzidis, 2019. "Interbank transactions on the intraday frequency: -Different market states and the effects of the financial crisis-," MAGKS Papers on Economics 201932, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    3. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    4. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    5. Anastasios Demertzidis, 2019. "Interbank transactions on the intraday frequency: -Different market states and the effects of the financial crisis-," MAGKS Papers on Economics 201932, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    6. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    7. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    8. Kul B. Luintel & Yongdeng Xu, 2017. "Testing weak exogeneity in multiplicative error models," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1617-1630, October.
    9. Anastasios Demertzidis & Vahidin Jeleskovic, 2021. "Empirical Estimation of Intraday Yield Curves on the Italian Interbank Credit Market e-MID," JRFM, MDPI, vol. 14(5), pages 1-23, May.
    10. Fabrizio Cipollini & Giampiero M. Gallo, 2021. "Multiplicative Error Models: 20 years on," Papers 2107.05923, arXiv.org.
    11. Bodnar, Taras & Hautsch, Nikolaus, 2016. "Dynamic conditional correlation multiplicative error processes," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 41-67.
    12. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    13. Gabbi, G. & Germano, G. & Hatzopoulos, V. & Iori, G. & Politi, M., 2012. "Market microstructure, bank's behaviour and interbank spreads," Working Papers 12/06, Department of Economics, City University London.
    14. Iori Giulia & Kapar Burcu & Olmo Jose, 2015. "Bank characteristics and the interbank money market: a distributional approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(3), pages 249-283, June.
    15. Patrick W Saart & Jiti Gao & Nam Hyun Kim, 2014. "Econometric Time Series Specification Testing in a Class of Multiplicative Error Models," Monash Econometrics and Business Statistics Working Papers 1/14, Monash University, Department of Econometrics and Business Statistics.
    16. Gerhard, Frank & Hautsch, Nikolaus, 2002. "Volatility estimation on the basis of price intensities," Journal of Empirical Finance, Elsevier, vol. 9(1), pages 57-89, January.
    17. Nguyen, Giang & Engle, Robert & Fleming, Michael & Ghysels, Eric, 2020. "Liquidity and volatility in the U.S. Treasury market," Journal of Econometrics, Elsevier, vol. 217(2), pages 207-229.
    18. Vahidin Jeleskovic & Anastasios Demertzidis, 2018. "Comparing different methods for the estimation of interbank intraday yield curves," MAGKS Papers on Economics 201839, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    19. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    20. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.
    21. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    22. Thomas Dimpfl & Stefania Odelli, 2020. "Bitcoin Price Risk—A Durations Perspective," JRFM, MDPI, vol. 13(7), pages 1-18, July.

    More about this item

    Keywords

    Multiplicative error models; interbank markets; e-MID; interstate volatility; trading intensity; intraday trading process; high-frequency financial data;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G01 - Financial Economics - - General - - - Financial Crises
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mar:magkse:201648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bernd Hayo (email available below). General contact details of provider: https://edirc.repec.org/data/vamarde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.