IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v40y2020i1p3-22.html
   My bibliography  Save this article

An analytical perturbative solution to the Merton–Garman model using symmetries

Author

Listed:
  • Xavier Calmet
  • Nathaniel Wiesendanger Shaw

Abstract

In this paper, we introduce an analytical perturbative solution to the Merton–Garman model. It is obtained by doing perturbation theory around the exact analytical solution of a model which possesses a two‐dimensional Galilean symmetry. We compare our perturbative solution of the Merton–Garman model to Monte Carlo simulations and find that our solutions perform surprisingly well for a wide range of parameters. We also show how to use symmetries to build option pricing models. Our results demonstrate that the concept of symmetry is important in mathematical finance.

Suggested Citation

  • Xavier Calmet & Nathaniel Wiesendanger Shaw, 2020. "An analytical perturbative solution to the Merton–Garman model using symmetries," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(1), pages 3-22, January.
  • Handle: RePEc:wly:jfutmk:v:40:y:2020:i:1:p:3-22
    DOI: 10.1002/fut.22061
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22061
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    2. Mark. B. Garman., 1976. "A General Theory of Asset Valuation under Diffusion State Processes," Research Program in Finance Working Papers 50, University of California at Berkeley.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Duan, Jin-Chuan & Yeh, Chung-Ying, 2010. "Jump and volatility risk premiums implied by VIX," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2232-2244, November.
    5. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    6. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    7. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    8. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    12. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    13. David S. Bates, 2006. "Maximum Likelihood Estimation of Latent Affine Processes," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 909-965.
    14. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    15. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    16. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    17. Christoffersen, Peter & Feunou, Bruno & Jacobs, Kris & Meddahi, Nour, 2014. "The Economic Value of Realized Volatility: Using High-Frequency Returns for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 663-697, June.
    18. repec:bla:jfinan:v:59:y:2004:i:3:p:1405-1440 is not listed on IDEAS
    19. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    20. L. F. Blazhyevskyi & V. S. Yanishevsky, 2011. "The path integral representation kernel of evolution operator in Merton-Garman model," Papers 1106.5143, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xavier Calmet & Nathaniel Wiesendanger Shaw, 2019. "An analytical perturbative solution to the Merton Garman model using symmetries," Papers 1909.01413, arXiv.org, revised Jan 2021.
    2. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    3. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    4. Audrino, Francesco & Fengler, Matthias R., 2015. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 46-63.
    5. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    6. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    7. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    8. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    9. Calvet, Laurent E. & Fearnley, Marcus & Fisher, Adlai J. & Leippold, Markus, 2015. "What is beneath the surface? Option pricing with multifrequency latent states," Journal of Econometrics, Elsevier, vol. 187(2), pages 498-511.
    10. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    11. Jiang, George J. & Tian, Yisong S., 2010. "Misreaction or misspecification? A re-examination of volatility anomalies," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2358-2369, October.
    12. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2007. "Models for S&P500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices," CREATES Research Papers 2007-37, Department of Economics and Business Economics, Aarhus University.
    13. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.
    14. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    15. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    16. Kanniainen, Juho & Piché, Robert, 2013. "Stock price dynamics and option valuations under volatility feedback effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 722-740.
    17. Gang Li & Chu Zhang, 2010. "On the Number of State Variables in Options Pricing," Management Science, INFORMS, vol. 56(11), pages 2058-2075, November.
    18. Xinyu WU & Hailin ZHOU, 2016. "GARCH DIFFUSION MODEL, iVIX, AND VOLATILITY RISK PREMIUM," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(1), pages 327-342.
    19. Carverhill, Andrew & Luo, Dan, 2023. "A Bayesian analysis of time-varying jump risk in S&P 500 returns and options," Journal of Financial Markets, Elsevier, vol. 64(C).
    20. repec:qut:auncer:2012_11 is not listed on IDEAS
    21. Kaeck, Andreas, 2013. "Asymmetry in the jump-size distribution of the S&P 500: Evidence from equity and option markets," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1872-1888.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:40:y:2020:i:1:p:3-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.