IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2123.html
   My bibliography  Save this paper

Modelling financial high frequency data using point processes

Author

Listed:
  • BAUWENS, Luc
  • HAUTSCH, Nikolaus

Abstract

In this paper, we give an overview of the state-of-the-art in the econometric literature on the modeling of so-called financial point processes. The latter are associated with the random arrival of specific financial trading events, such as transactions, quote updates, limit orders or price changes observable based on financial high-frequency data. After discussing fundamental statistical concepts of point process theory, we review duration-based and intensity-based models of financial point processes. Whereas duration-based approaches are mostly preferable for univariate time series, intensity-based models provide powerful frameworks to model multivariate point processes in continuous time. We illustrate the most important properties of the individual models and discuss major empirical applications.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • BAUWENS, Luc & HAUTSCH, Nikolaus, 2009. "Modelling financial high frequency data using point processes," LIDAM Reprints CORE 2123, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2123
    Note: In : T.G. Andersen, R.A. Davis, J.-P. Kreiss, and T. Mikosch (eds.), Handbook of Financial Time Series. Springer-Verlag Heidelberg, 953-979, 2009
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
    2. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," LIDAM Discussion Papers CORE 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Meddahi, Nour & Renault, Eric & Werker, Bas, 2006. "GARCH and irregularly spaced data," Economics Letters, Elsevier, vol. 90(2), pages 200-204, February.
    4. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.
    5. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    6. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
    7. Christian Hafner, 2005. "Durations, volume and the prediction of financial returns in transaction time," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 145-152.
    8. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    9. Luc Bauwens & Pierre Giot, 2003. "Asymmetric ACD models: Introducing price information in ACD models," Empirical Economics, Springer, vol. 28(4), pages 709-731, November.
    10. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
    11. Pierre Giot, 2005. "Market risk models for intraday data," The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 309-324.
    12. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    13. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    14. James D. Hamilton & Oscar Jorda, 2002. "A Model of the Federal Funds Rate Target," Journal of Political Economy, University of Chicago Press, vol. 110(5), pages 1135-1167, October.
    15. Roman Liesenfeld & Ingmar Nolte & Winfried Pohlmeier, 2008. "Modelling financial transaction price movements: a dynamic integer count data model," Studies in Empirical Economics, in: Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), High Frequency Financial Econometrics, pages 167-197, Springer.
    16. Brock, W.A. & Dechert, W.D. & LeBaron, B. & Scheinkman, J.A., 1995. "A Test for Independence Based on the Correlation Dimension," Working papers 9520, Wisconsin Madison - Social Systems.
    17. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    18. Kiefer, Nicholas M, 1988. "Economic Duration Data and Hazard Functions," Journal of Economic Literature, American Economic Association, vol. 26(2), pages 646-679, June.
    19. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
    20. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    21. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    22. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
    23. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    24. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    25. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    26. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
    27. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    28. Robert F. Engle & Asger Lunde, 2003. "Trades and Quotes: A Bivariate Point Process," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 159-188.
    29. Jan Henneke & Svetlozar Rachev & Frank Fabozzi & Metodi Nikolov, 2011. "MCMC-based estimation of Markov Switching ARMA-GARCH models," Applied Economics, Taylor & Francis Journals, vol. 43(3), pages 259-271.
    30. Nikolaus Hautsch, 2003. "Assessing the Risk of Liquidity Suppliers on the Basis of Excess Demand Intensities," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 189-215.
    31. Giovanni De Luca & Paola Zuccolotto, 2003. "Finite and infinite mixtures for financial durations," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 431-455.
    32. Luc Bauwens & Nikolaus Hautsch, 2006. "Stochastic Conditional Intensity Processes," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 450-493.
    33. Joann Jasiak, 1996. "Persistence in Intertrade Durations," Working Papers 1999_8, York University, Department of Economics, revised Mar 1999.
    34. Nikolaus Hautsch, 2006. "Testing the Conditional Mean Function of Autoregressive Conditional Duration Models," FRU Working Papers 2006/06, University of Copenhagen. Department of Economics. Finance Research Unit.
    35. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    36. Anthony D. Hall & Nikolaus Hautsch, 2008. "Order aggressiveness and order book dynamics," Studies in Empirical Economics, in: Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), High Frequency Financial Econometrics, pages 133-165, Springer.
    37. Christophe Bisière & Thierry Kamionka, 2000. "Timing of Orders, Order Aggressiveness and the Order Book at the Paris Bourse," Annals of Economics and Statistics, GENES, issue 60, pages 43-72.
    38. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    39. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    40. Heinen, Andreas & Rengifo, Erick, 2007. "Multivariate autoregressive modeling of time series count data using copulas," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 564-583, September.
    41. Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
    42. Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2006. "Regime switching GARCH models," Cahiers de recherche 06-08, HEC Montréal, Institut d'économie appliquée.
    43. Meitz, Mika & Terasvirta, Timo, 2006. "Evaluating Models of Autoregressive Conditional Duration," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 104-124, January.
    44. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    45. Hall, Anthony D. & Hautsch, Nikolaus, 2007. "Modelling the buy and sell intensity in a limit order book market," Journal of Financial Markets, Elsevier, vol. 10(3), pages 249-286, August.
    46. Gerhard, Frank & Hautsch, Nikolaus, 2002. "Volatility estimation on the basis of price intensities," Journal of Empirical Finance, Elsevier, vol. 9(1), pages 57-89, January.
    47. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    48. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.
    49. John Knight & Cathy Q. Ning, 2008. "Estimation of the stochastic conditional duration model via alternative methods," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 593-616, November.
    50. Han, Aaron & Hausman, Jerry A, 1990. "Flexible Parametric Estimation of Duration and Competing Risk Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(1), pages 1-28, January-M.
    51. repec:adr:anecst:y:2000:i:60:p:03 is not listed on IDEAS
    52. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    53. De Luca Giovanni & Gallo Giampiero M., 2004. "Mixture Processes for Financial Intradaily Durations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.
    54. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    55. Rombouts, Jeroen V. K. & Bauwens, Luc, 2004. "Econometrics," Papers 2004,33, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
      • BAUWENS, Luc & ROMBOUTS, Jeroen V.K., 2004. "Econometrics," LIDAM Reprints CORE 1713, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    2. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    4. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    5. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    6. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    7. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    8. Renault, Eric & van der Heijden, Thijs & Werker, Bas J.M., 2014. "The dynamic mixed hitting-time model for multiple transaction prices and times," Journal of Econometrics, Elsevier, vol. 180(2), pages 233-250.
    9. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    10. Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Stanislav Anatolyev & Dmitry Shakin, 2007. "Trade intensity in the Russian stock market: dynamics, distribution and determinants," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 87-104.
    12. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
    13. Yongmiao Hong & Yoon-Jin Lee, 2007. "Detecting Misspecifications in Autoregressive Conditional Duration Models," CAEPR Working Papers 2007-019, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    14. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    15. Roman Huptas, 2016. "The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 1-20, March.
    16. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    17. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    18. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    19. repec:wyi:journl:002120 is not listed on IDEAS
    20. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
    21. Yogo Purwono & Irwan Adi Ekaputra & Zaäfri Ananto Husodo, 2018. "Estimation of Dynamic Mixed Hitting Time Model Using Characteristic Function Based Moments," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 295-321, February.
    22. Chun Liu & John M Maheu, 2010. "Intraday Dynamics of Volatility and Duration: Evidence from the Chinese Stock Market," Working Papers tecipa-401, University of Toronto, Department of Economics.
    23. Katarzyna Bień-Barkowska, 2014. "Capturing Order Book Dynamics in the Interbank EUR/PLN Spot Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(1), pages 93-117, January.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.