IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v29y2008i1p74-124.html
   My bibliography  Save this article

Duration time‐series models with proportional hazard

Author

Listed:
  • P. Gagliardini
  • C. Gourieroux

Abstract

. The analysis of liquidity in financial markets is generally performed by means of the dynamics of the observed intertrade durations (possibly weighted by price or volume). Various dynamic models for duration data have been considered in the literature, such as the Autoregressive Conditional Duration (ACD) model. These models are often excessively constrained, introducing, for example, a deterministic link between conditional expectation and variance in the case of the ACD model. Moreover, the stationarity properties and the patterns of the stationary distributions are often unknown. The aim of this article is to solve these difficulties by considering a duration time series satisfying the proportional hazard property. We describe in detail this class of dynamic models, discuss its various representations and provide the ergodicity conditions. The proportional hazard copula can be specified either parametrically, or nonparametrically. We discuss estimation methods in both contexts, and explain why they are efficient, that is, why they reach the parametric (respectively, nonparametric) efficiency bound.

Suggested Citation

  • P. Gagliardini & C. Gourieroux, 2008. "Duration time‐series models with proportional hazard," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 74-124, January.
  • Handle: RePEc:bla:jtsera:v:29:y:2008:i:1:p:74-124
    DOI: 10.1111/j.1467-9892.2007.00546.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2007.00546.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2007.00546.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ghysels, E. & Jasiak, J., 1994. "Stochastic Volatility and time Deformation: an Application of trading Volume and Leverage Effects," Cahiers de recherche 9403, Universite de Montreal, Departement de sciences economiques.
    2. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    3. Nikolaus Hautsch, 1999. "Analyzing the Time between Trades with a Gamma Compounded Hazard Model. An Application to LIFFE Bund Future Transactions," Finance 9904002, University Library of Munich, Germany.
    4. Gourieroux, Christian & Robert, Christian Y., 2006. "Stochastic Unit Root Models," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1052-1090, December.
    5. George Kimeldorf & Allan Sampson, 1989. "A framework for positive dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(1), pages 31-45, March.
    6. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
    7. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    8. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    9. Gagliardini, Patrick & Gourieroux, Christian, 2007. "An efficient nonparametric estimator for models with nonlinear dependence," Journal of Econometrics, Elsevier, vol. 137(1), pages 189-229, March.
    10. Joann Jasiak, 1996. "Persistence in Intertrade Durations," Working Papers 1999_8, York University, Department of Economics, revised Mar 1999.
    11. Serge Darolles & Christian Gourieroux & Joann Jasiak, 2006. "Structural Laplace Transform and Compound Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(4), pages 477-503, July.
    12. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    13. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    14. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    15. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    16. Takemi Yanagimoto & Masashi Okamoto, 1969. "Partial orderings of permutations and monotonicity of a rank correlation statistic," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 489-506, December.
    17. Severini, Thomas A. & Tripathi, Gautam, 2001. "A simplified approach to computing efficiency bounds in semiparametric models," Journal of Econometrics, Elsevier, vol. 102(1), pages 23-66, May.
    18. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    2. Costanza Naguib & Patrick Gagliardini, 2023. "A Semi-nonparametric Copula Model for Earnings Mobility," Diskussionsschriften dp2302, Universitaet Bern, Departement Volkswirtschaft.
    3. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1165-1185, December.
    4. Yanqin Fan & Xiaohong Chen & Andrew Patton, 2004. "(IAM Series No 003) Simple Tests for Models of Dependence Between Multiple Financial Time Series, with Applications to U.S. Equity Returns and Exchange Rates," FMG Discussion Papers dp483, Financial Markets Group.
    5. Brendan K. Beare & Juwon Seo, 2015. "Vine Copula Specifications for Stationary Multivariate Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 228-246, March.
    6. Brendan K. Beare, 2010. "Copulas and Temporal Dependence," Econometrica, Econometric Society, vol. 78(1), pages 395-410, January.
    7. Longla, Martial & Peligrad, Magda, 2012. "Some aspects of modeling dependence in copula-based Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 234-240.
    8. Xiaohong Chen & Yanqin Fan, 2002. "Evaluating Density Forecasts via the Copula Approach," Vanderbilt University Department of Economics Working Papers 0225, Vanderbilt University Department of Economics, revised Sep 2003.
    9. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhicheng & Chen, Xinyun & Xing, Haipeng, 2023. "A multifactor regime-switching model for inter-trade durations in the high-frequency limit order market," Economic Modelling, Elsevier, vol. 118(C).
    2. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    3. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    4. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    5. Stanislav Anatolyev & Dmitry Shakin, 2007. "Trade intensity in the Russian stock market: dynamics, distribution and determinants," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 87-104.
    6. Yiing Fei Tan & Kok Haur Ng & You Beng Koh & Shelton Peiris, 2022. "Modelling Trade Durations Using Dynamic Logarithmic Component ACD Model with Extended Generalised Inverse Gaussian Distribution," Mathematics, MDPI, vol. 10(10), pages 1-20, May.
    7. Zhicheng Li & Haipeng Xing & Xinyun Chen, 2019. "A multifactor regime-switching model for inter-trade durations in the limit order market," Papers 1912.00764, arXiv.org.
    8. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    9. Bodnar, Taras & Hautsch, Nikolaus, 2016. "Dynamic conditional correlation multiplicative error processes," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 41-67.
    10. Allen, David & Lazarov, Zdravetz & McAleer, Michael & Peiris, Shelton, 2009. "Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2535-2555.
    11. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    12. Bodnar, Taras & Hautsch, Nikolaus, 2012. "Copula-based dynamic conditional correlation multiplicative error processes," SFB 649 Discussion Papers 2012-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Wong, Woon K. & Tan, Dijun & Tian, Yixiang, 2009. "Informed trading and liquidity in the Shanghai Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 66-73, March.
    14. Araichi, Sawssen & Peretti, Christian de & Belkacem, Lotfi, 2016. "Solvency capital requirement for a temporal dependent losses in insurance," Economic Modelling, Elsevier, vol. 58(C), pages 588-598.
    15. repec:hum:wpaper:sfb649dp2012-044 is not listed on IDEAS
    16. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    17. Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Gerhard, Frank & Hautsch, Nikolaus, 2002. "Volatility estimation on the basis of price intensities," Journal of Empirical Finance, Elsevier, vol. 9(1), pages 57-89, January.
    19. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
    20. Dungey, Mardi & Jeyasreedharan, Nagaratnam & Li, Tuo, 2010. "Modelling the Time Between Trades in the After-Hours Electronic Equity Futures Market," Working Papers 10451, University of Tasmania, Tasmanian School of Business and Economics, revised 30 May 2012.
    21. Yogo Purwono & Irwan Adi Ekaputra & Zaäfri Ananto Husodo, 2018. "Estimation of Dynamic Mixed Hitting Time Model Using Characteristic Function Based Moments," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 295-321, February.
    22. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:29:y:2008:i:1:p:74-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.