IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v51y2018i4d10.1007_s10614-017-9652-1.html
   My bibliography  Save this article

A New Predictive Measure Using Agent-Based Behavioral Finance

Author

Listed:
  • Todd Feldman

    (San Francisco State University)

  • Shuming Liu

    (San Francisco State University)

Abstract

We calibrate Friedman and Abraham’s (J Econ Dyn Control 33:922–937, 2009) agent-based model using actual financial data in the US stock market. The evidence shows that the estimated price series from the model is similar to real S&P price series and the model does match return moments at the second and higher order. In addition, we develop a new measure of investor heterogeneity based on the variability in the estimated position sizes across all mutual fund managers. Our results show that the volatility in individual fund manager positions is able to predict future returns in various time horizons. Moreover, increased variability in position sizes positively affects the contemporaneous change in the CBOE Volatility Index and also leads to greater probability of recession.

Suggested Citation

  • Todd Feldman & Shuming Liu, 2018. "A New Predictive Measure Using Agent-Based Behavioral Finance," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 941-959, April.
  • Handle: RePEc:kap:compec:v:51:y:2018:i:4:d:10.1007_s10614-017-9652-1
    DOI: 10.1007/s10614-017-9652-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-017-9652-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-017-9652-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evan W. Anderson & Eric Ghysels & Jennifer L. Juergens, 2005. "Do Heterogeneous Beliefs Matter for Asset Pricing?," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 875-924.
    2. Karl B. Diether & Christopher J. Malloy & Anna Scherbina, 2002. "Differences of Opinion and the Cross Section of Stock Returns," Journal of Finance, American Finance Association, vol. 57(5), pages 2113-2141, October.
    3. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    4. Campbell, John Y, 1991. "A Variance Decomposition for Stock Returns," Economic Journal, Royal Economic Society, vol. 101(405), pages 157-179, March.
    5. Klein, Achim & Urbig, Diemo, 2008. "Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach," MPRA Paper 116175, University Library of Munich, Germany, revised 30 Apr 2011.
    6. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    7. Fama, Eugene F. & Schwert, G. William, 1977. "Asset returns and inflation," Journal of Financial Economics, Elsevier, vol. 5(2), pages 115-146, November.
    8. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    9. Steven A. Sharpe, 2002. "Reexamining Stock Valuation and Inflation: The Implications Of Analysts' Earnings Forecasts," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 632-648, November.
    10. Brad M. Barber & Terrance Odean, 2000. "Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors," Journal of Finance, American Finance Association, vol. 55(2), pages 773-806, April.
    11. Buraschi, Andrea & Jackwerth, Jens, 2001. "The Price of a Smile: Hedging and Spanning in Option Markets," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 495-527.
    12. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    13. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    14. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    15. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    16. Jose A. Scheinkman & Wei Xiong, 2003. "Overconfidence and Speculative Bubbles," Journal of Political Economy, University of Chicago Press, vol. 111(6), pages 1183-1219, December.
    17. Peter Winker and Manfred Gilli, 2001. "Indirect Estimation of the Parameters of Agent Based Models of Financial Markets," Computing in Economics and Finance 2001 59, Society for Computational Economics.
    18. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    19. Fama, Eugene F., 1990. "Term-structure forecasts of interest rates, inflation and real returns," Journal of Monetary Economics, Elsevier, vol. 25(1), pages 59-76, January.
    20. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    21. Friedman, Daniel & Abraham, Ralph, 2009. "Bubbles and crashes: Gradient dynamics in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 922-937, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    2. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    3. Yu, Jialin, 2011. "Disagreement and return predictability of stock portfolios," Journal of Financial Economics, Elsevier, vol. 99(1), pages 162-183, January.
    4. Kukacka, Jiri & Barunik, Jozef, 2013. "Behavioural breaks in the heterogeneous agent model: The impact of herding, overconfidence, and market sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5920-5938.
    5. Verma, Rahul & Verma, Priti, 2008. "Are survey forecasts of individual and institutional investor sentiments rational?," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 1139-1155, December.
    6. Verma, Rahul & Soydemir, Gökçe, 2009. "The impact of individual and institutional investor sentiment on the market price of risk," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 1129-1145, August.
    7. Chen, Yong & Da, Zhi & Huang, Dayong, 2022. "Short selling efficiency," Journal of Financial Economics, Elsevier, vol. 145(2), pages 387-408.
    8. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    9. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    11. Tedeschi, Gabriele & Recchioni, Maria Cristina & Berardi, Simone, 2019. "An approach to identifying micro behavior: How banks’ strategies influence financial cycles," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 329-346.
    12. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
    13. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    14. Campbell, John Y & Ammer, John, 1993. "What Moves the Stock and Bond Markets? A Variance Decomposition for Long-Term Asset Returns," Journal of Finance, American Finance Association, vol. 48(1), pages 3-37, March.
    15. Maio, Paulo & Santa-Clara, Pedro, 2012. "Multifactor models and their consistency with the ICAPM," Journal of Financial Economics, Elsevier, vol. 106(3), pages 586-613.
    16. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    17. Markus K. Brunnermeier & Christian Julliard, 2008. "Money Illusion and Housing Frenzies," The Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 135-180, January.
    18. Raquel Almeida Ramos & Federico Bassi & Dany Lang, 2020. "Bet against the trend and cash in profits," DISCE - Working Papers del Dipartimento di Economia e Finanza def090, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    19. Federico Bassi & Raquel Ramos & Dany Lang, 2023. "Bet against the trend and cash in profits: An agent-based model of endogenous fluctuations of exchange rates," Journal of Evolutionary Economics, Springer, vol. 33(2), pages 429-472, April.
    20. Frank Weikai Li, 2016. "Macro Disagreement and the Cross-Section of Stock Returns," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 6(1), pages 1-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:51:y:2018:i:4:d:10.1007_s10614-017-9652-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.