IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v69y2023i3p1780-1804.html
   My bibliography  Save this article

Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance

Author

Listed:
  • Jing-Zhi Huang

    (Department of Finance, Smeal College of Business, Penn State University, University Park, Pennsylvania 16802)

  • Zhan Shi

    (PBC School of Finance, Tsinghua University, Beijing 100083, China)

Abstract

We propose a two-step machine learning algorithm—the Supervised Adaptive Group LASSO (SAGLasso) method—that is suitable for constructing parsimonious return predictors from a large set of macro variables. We apply this method to government bonds and a set of 917 macro variables and construct a new, transparent, and easy-to-interpret macro variable with significant out-of-sample predictive power for excess bond returns. This new macro factor, termed the SAGLasso factor, is a linear combination of merely 30 selected macro variables out of 917. Furthermore, it can be decomposed into three sublevel factors: a novel housing factor, an employment factor, and an inflation factor. Importantly, the predictive power of the SAGLasso factor is robust to bond yields, namely, the SAGLasso factor is not spanned by bond yields. Moreover, we show that the unspanned variation of the SAGLasso factor cannot be attributed to yield measurement error or macro measurement error. The SAGLasso factor therefore provides a potential resolution to the spanning controversy in the macro-finance literature.

Suggested Citation

  • Jing-Zhi Huang & Zhan Shi, 2023. "Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance," Management Science, INFORMS, vol. 69(3), pages 1780-1804, March.
  • Handle: RePEc:inm:ormnsc:v:69:y:2023:i:3:p:1780-1804
    DOI: 10.1287/mnsc.2022.4386
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2022.4386
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2022.4386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Hodrick, Robert J, 1980. "Forward Exchange Rates as Optimal Predictors of Future Spot Rates: An Econometric Analysis," Journal of Political Economy, University of Chicago Press, vol. 88(5), pages 829-853, October.
    2. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    3. Scott Joslin & Kenneth J. Singleton & Haoxiang Zhu, 2011. "A New Perspective on Gaussian Dynamic Term Structure Models," The Review of Financial Studies, Society for Financial Studies, vol. 24(3), pages 926-970.
    4. Piazzesi, Monika & Schneider, Martin & Tuzel, Selale, 2007. "Housing, consumption and asset pricing," Journal of Financial Economics, Elsevier, vol. 83(3), pages 531-569, March.
    5. Scott Joslin & Marcel Priebsch & Kenneth J. Singleton, 2014. "Risk Premiums in Dynamic Term Structure Models with Unspanned Macro Risks," Journal of Finance, American Finance Association, vol. 69(3), pages 1197-1233, June.
    6. Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020. "Dissecting Characteristics Nonparametrically," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    7. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    8. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
    9. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    10. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    11. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    12. Wachter, Jessica A., 2006. "A consumption-based model of the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 79(2), pages 365-399, February.
    13. John Y. Campbell & Robert J. Shiller, 1991. "Yield Spreads and Interest Rate Movements: A Bird's Eye View," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 495-514.
    14. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    15. Anna Cieslak & Pavol Povala, 2015. "Expected Returns in Treasury Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 28(10), pages 2859-2901.
    16. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    17. Michael D. Bauer & James D. Hamilton, 2018. "Robust Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 399-448.
    18. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    19. Eric Ghysels & Casidhe Horan & Emanuel Moench, 2018. "Forecasting through the Rearview Mirror: Data Revisions and Bond Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 678-714.
    20. Greg Duffee, 2010. "Sharpe ratios in term structure models," Economics Working Paper Archive 575, The Johns Hopkins University,Department of Economics.
    21. Kim, Don H. & Orphanides, Athanasios, 2012. "Term Structure Estimation with Survey Data on Interest Rate Forecasts," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 47(1), pages 241-272, February.
    22. Goto, Shingo & Xu, Yan, 2015. "Improving Mean Variance Optimization through Sparse Hedging Restrictions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 50(6), pages 1415-1441, December.
    23. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    24. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    25. Anna Cieslak, 2018. "Short-Rate Expectations and Unexpected Returns in Treasury Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 31(9), pages 3265-3306.
    26. Ericsson, Neil R., 1992. "Parameter constancy, mean square forecast errors, and measuring forecast performance: An exposition, extensions, and illustration," Journal of Policy Modeling, Elsevier, vol. 14(4), pages 465-495, August.
    27. Min Wei & Jonathan H. Wright, 2013. "Reverse Regressions And Long‐Horizon Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 353-371, April.
    28. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    29. Ilan Cooper, 2009. "Time-Varying Risk Premiums and the Output Gap," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2601-2633, July.
    30. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    31. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    32. Christopher S. Jones & Selale Tuzel, 2013. "New Orders and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 26(1), pages 115-157.
    33. Daniel L. Thornton & Giorgio Valente, 2012. "Out-of-Sample Predictions of Bond Excess Returns and Forward Rates: An Asset Allocation Perspective," The Review of Financial Studies, Society for Financial Studies, vol. 25(10), pages 3141-3168.
    34. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    35. Wright, Jonathan H. & Zhou, Hao, 2009. "Bond risk premia and realized jump risk," Journal of Banking & Finance, Elsevier, vol. 33(12), pages 2333-2345, December.
    36. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    37. Jonathan H. Wright, 2011. "Term Premia and Inflation Uncertainty: Empirical Evidence from an International Panel Dataset," American Economic Review, American Economic Association, vol. 101(4), pages 1514-1534, June.
    38. Joslin, Scott & Le, Anh & Singleton, Kenneth J., 2013. "Why Gaussian macro-finance term structure models are (nearly) unconstrained factor-VARs," Journal of Financial Economics, Elsevier, vol. 109(3), pages 604-622.
    39. Chernov, Mikhail & Mueller, Philippe, 2012. "The term structure of inflation expectations," Journal of Financial Economics, Elsevier, vol. 106(2), pages 367-394.
    40. Gregory R. Duffee, 2011. "Information in (and not in) the Term Structure," The Review of Financial Studies, Society for Financial Studies, vol. 24(9), pages 2895-2934.
    41. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    42. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    43. Stambaugh, Robert F., 1988. "The information in forward rates : Implications for models of the term structure," Journal of Financial Economics, Elsevier, vol. 21(1), pages 41-70, May.
    44. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    45. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Dashan & Jiang, Fuwei & Li, Kunpeng & Tong, Guoshi & Zhou, Guofu, 2023. "Are bond returns predictable with real-time macro data?," Journal of Econometrics, Elsevier, vol. 237(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Liu, 2019. "Forecasting Bond Risk Premia with Unspanned Macroeconomic Information," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-62, March.
    2. Guo, Bin & Huang, Fuzhe & Li, Kai, 2022. "Time to build and bond risk premia," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    3. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    4. Feng Zhao & Guofu Zhou & Xiaoneng Zhu, 2021. "Unspanned Global Macro Risks in Bond Returns," Management Science, INFORMS, vol. 67(12), pages 7825-7843, December.
    5. Zhang, Han & Guo, Bin & Liu, Lanbiao, 2022. "The time-varying bond risk premia in China," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 51-76.
    6. Doshi, Hitesh & Jacobs, Kris & Liu, Rui, 2018. "Macroeconomic determinants of the term structure: Long-run and short-run dynamics," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 99-122.
    7. Michael D. Bauer & Glenn D. Rudebusch, 2020. "Interest Rates under Falling Stars," American Economic Review, American Economic Association, vol. 110(5), pages 1316-1354, May.
    8. Andrea Berardi & Michael Markovich & Alberto Plazzi & Andrea Tamoni, 2019. "Mind the (Convergence) Gap: Bond Predictability Strikes Back!," Swiss Finance Institute Research Paper Series 19-52, Swiss Finance Institute.
    9. Andrea Berardi & Michael Markovich & Alberto Plazzi & Andrea Tamoni, 2021. "Mind the (Convergence) Gap: Bond Predictability Strikes Back!," Management Science, INFORMS, vol. 67(12), pages 7888-7911, December.
    10. Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Management Science, INFORMS, vol. 65(2), pages 508-540, February.
    11. Zhang, Han & Fan, Xiaoyun & Guo, Bin & Zhang, Wei, 2019. "Reexamining time-varying bond risk premia in the post-financial crisis era," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    12. Dubiel-Teleszynski, Tomasz & Kalogeropoulos, Konstantinos & Karouzakis, Nikolaos, 2024. "Sequential learning and economic benefits from dynamic term structure models," LSE Research Online Documents on Economics 123659, London School of Economics and Political Science, LSE Library.
    13. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," SIRE Discussion Papers 2015-71, Scottish Institute for Research in Economics (SIRE).
    14. Duffee, Gregory, 2013. "Forecasting Interest Rates," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 385-426, Elsevier.
    15. De Rezende, Rafael B., 2015. "Risks in macroeconomic fundamentals and excess bond returns predictability," Working Paper Series 295, Sveriges Riksbank (Central Bank of Sweden).
    16. Richard K. Crump & Stefano Eusepi & Emanuel Moench, 2016. "The term structure of expectations and bond yields," Staff Reports 775, Federal Reserve Bank of New York.
    17. Wan, Runqing & Fulop, Andras & Li, Junye, 2022. "Real-time Bayesian learning and bond return predictability," Journal of Econometrics, Elsevier, vol. 230(1), pages 114-130.
    18. Liu, Yan & Wu, Jing Cynthia, 2021. "Reconstructing the yield curve," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1395-1425.
    19. Chiarella, Carl & Hsiao, Chih-Ying & Tô, Thuy-Duong, 2016. "Stochastic correlation and risk premia in term structure models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 59-78.
    20. Hitesh Doshi & Kris Jacobs & Rui Liu, 2021. "Information in the Term Structure: A Forecasting Perspective," Management Science, INFORMS, vol. 67(8), pages 5255-5277, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:69:y:2023:i:3:p:1780-1804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.