IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v33y2014i3p198-213.html
   My bibliography  Save this article

Forecasting Mixed‐Frequency Time Series with ECM‐MIDAS Models

Author

Listed:
  • Thomas B. Götz
  • Alain Hecq
  • Jean‐Pierre Urbain

Abstract

This paper proposes a mixed-frequency error-correction model in order to develop a regressionapproach for non-stationary variables sampled at different frequencies that are possiblycointegrated. We show that, at the model representation level, the choice of the timing betweenthe low-frequency ependent and the high-frequency explanatory variables to be included in thelong-run has an impact on the remaining dynamics and on the forecasting properties. Then, wecompare in a set of Monte Carlo experiments the forecasting performances of the low-frequencyaggregated model and several mixed-frequency regressions. In particular, we look at both theunrestricted mixed-frequency model and at a more parsimonious MIDAS regression. Whilst theexisting literature has only investigated the potential improvements of the MIDAS framework forstationary time series, our study emphasizes the need to include the relevant cointegratingvectors in the non-stationary case. Furthermore, it is illustrated that the exact timing of thelong-run relationship does notmatter as long as the short-run dynamics are adapted according to the composition of thedisequilibrium error. Finally, the unrestricted model is shown to suffer from parameterproliferation for small sample sizeswhereas MIDAS forecasts are robust to over-parameterization. Hence, the data-driven,low-dimensional and flexible weighting structure makes MIDAS a robust and parsimonious method tofollow when the true underlying DGP is unknown while still exploiting information present in thehigh-frequency. An empirical application illustrates the theoretical and the Monte Carlo results.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed fr
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Thomas B. Götz & Alain Hecq & Jean‐Pierre Urbain, 2014. "Forecasting Mixed‐Frequency Time Series with ECM‐MIDAS Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 198-213, April.
  • Handle: RePEc:wly:jforec:v:33:y:2014:i:3:p:198-213
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    2. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    3. Pons, Gabriel & Sansó, Andreu, 2005. "Estimation Of Cointegrating Vectors With Time Series Measured At Different Periodicity," Econometric Theory, Cambridge University Press, vol. 21(4), pages 735-756, August.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
    6. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    7. J. Isaac Miller, 2016. "Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
    8. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    9. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, October.
    10. J. Isaac Miller, 2011. "Cointegrating MiDaS Regressions and a MiDaS Test," Working Papers 1104, Department of Economics, University of Missouri.
    11. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.
    12. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    13. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    14. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    15. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    16. Chambers, Marcus J., 2003. "The Asymptotic Efficiency Of Cointegration Estimators Under Temporal Aggregation," Econometric Theory, Cambridge University Press, vol. 19(1), pages 49-77, February.
    17. Engle, Robert F. & Yoo, Byung Sam, 1987. "Forecasting and testing in co-integrated systems," Journal of Econometrics, Elsevier, vol. 35(1), pages 143-159, May.
    18. Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-136, January.
    19. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    20. Michael P. Clements & Ana Beatriz Galvão, 2007. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth," Working Papers 616, Queen Mary University of London, School of Economics and Finance.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals with Google Trends and Mixed Frequency Data," EconStor Preprints 187420, ZBW - Leibniz Information Centre for Economics.
    2. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    3. Hassani, Hossein & Rua, António & Silva, Emmanuel Sirimal & Thomakos, Dimitrios, 2019. "Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1263-1272.
    4. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
    5. Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
    6. Peter Fuleky & Carl Bonham, 2010. "Forecasting Based on Common Trends in Mixed Frequency Samples," Working Papers 2010-17R1, University of Hawaii Economic Research Organization, University of Hawaii at Manoa, revised Jul 2013.
    7. Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012. "Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data)," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    8. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    9. Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122, Emerald Group Publishing Limited.
    10. Miller, J. Isaac, 2018. "Simple robust tests for the specification of high-frequency predictors of a low-frequency series," Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
    11. Yunxu Wang & Chi-Wei Su & Yuchen Zhang & Oana-Ramona Lobonţ & Qin Meng, 2023. "Effectiveness of Principal-Component-Based Mixed-Frequency Error Correction Model in Predicting Gross Domestic Product," Mathematics, MDPI, vol. 11(19), pages 1-14, September.
    12. Kurz-Kim, Jeong-Ryeol, 2018. "A note on the predictive power of survey data in nowcasting euro area GDP," Discussion Papers 10/2018, Deutsche Bundesbank.
    13. Peter Fuleky & Carl, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 2013-5, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    14. Götz, Thomas B. & Hauzenberger, Klemens, 2018. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," Discussion Papers 40/2018, Deutsche Bundesbank.
    15. Thomas B. Götz & Alain W. Hecq, 2019. "Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
    16. Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
    17. Adeniji Sesan Oluseyi & Timilehin John Olasehinde & Gamaliel O. Eweke, 2017. "The Impact of Money Supply on Nigeria Economy: A Comparison of Mixed Data Sampling (MIDAS) and ARDL Approach," EuroEconomica, Danubius University of Galati, issue 2(36), pages 123-134, November.
    18. Marçal, Emerson Fernandes & Zimmermann, Beatrice Aline & Mendonça, Diogo de Prince & Merlin, Giovanni Tondin, 2015. "Does mixed frequency vector error correction model add relevant information to exchange misalignment calculus? Evidence for United States," Textos para discussão 385, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    19. Thomas B. Götz & Alain Hecq & Jean-Pierre Urbain, 2013. "Testing for Common Cycles in Non-Stationary VARs with Varied Frequency Data," Advances in Econometrics, in: VAR Models in Macroeconomics – New Developments and Applications: Essays in Honor of Christopher A. Sims, volume 32, pages 361-393, Emerald Group Publishing Limited.
    20. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012. "Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data)," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    2. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    3. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    4. Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
    5. Miller, J. Isaac, 2018. "Simple robust tests for the specification of high-frequency predictors of a low-frequency series," Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
    6. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    7. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    8. Thomas B. Götz & Alain W. Hecq, 2019. "Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
    9. Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
    10. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    11. Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
    12. Xu, Qifa & Zhuo, Xingxuan & Jiang, Cuixia & Liu, Xi & Liu, Yezheng, 2018. "Group penalized unrestricted mixed data sampling model with application to forecasting US GDP growth," Economic Modelling, Elsevier, vol. 75(C), pages 221-236.
    13. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    14. Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).
    15. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    16. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    17. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    18. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    19. Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:33:y:2014:i:3:p:198-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.