IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2012-044.html
   My bibliography  Save this paper

Copula-based dynamic conditional correlation multiplicative error processes

Author

Listed:
  • Bodnar, Taras
  • Hautsch, Nikolaus

Abstract

We introduce a copula-based dynamic model for multivariate processes of (non-negative) high-frequency trading variables revealing time-varying conditional variances and correlations. Modeling the variables' conditional mean processes using a multiplicative error model we map the resulting residuals into a Gaussian domain using a Gaussian copula. Based on high-frequency volatility, cumulative trading volumes, trade counts and market depth of various stocks traded at the NYSE, we show that the proposed copula-based transformation is supported by the data and allows disentangling (multivariate) dynamics in higher order moments. To capture the latter, we propose a DCC-GARCH specification. We suggest estimating the model by composite maximum likelihood which is sufficiently flexible to be applicable in high dimensions. Strong empirical evidence for time-varying conditional (co-)variances in trading processes supports the usefulness of the approach. Taking these higher-order dynamics explicitly into account significantly improves the goodness-of-fit of the multiplicative error model and allows capturing time-varying liquidity risks.

Suggested Citation

  • Bodnar, Taras & Hautsch, Nikolaus, 2012. "Copula-based dynamic conditional correlation multiplicative error processes," SFB 649 Discussion Papers 2012-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2012-044
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/79582/1/719579198.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2013. "Semiparametric Vector Mem," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1067-1086, November.
    2. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Intra-daily Volume Modeling and Prediction for Algorithmic Trading," Journal of Financial Econometrics, Oxford University Press, vol. 9(3), pages 489-518, Summer.
    3. Lee, Tae-Hwy & Long, Xiangdong, 2009. "Copula-based multivariate GARCH model with uncorrelated dependent errors," Journal of Econometrics, Elsevier, vol. 150(2), pages 207-218, June.
    4. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    5. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    6. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    7. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, January.
    8. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    9. Brownlees Christian T. & Vannucci Marina, 2013. "A Bayesian approach for capturing daily heterogeneity in intra-daily durations time series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 21-46, February.
    10. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
    11. Patton, Andrew J, 2001. "Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula," University of California at San Diego, Economics Working Paper Series qt01q7j1s2, Department of Economics, UC San Diego.
    12. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    13. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Technical Working Papers 0331, National Bureau of Economic Research, Inc.
    14. Glosten, Lawrence R, 1994. "Is the Electronic Open Limit Order Book Inevitable?," Journal of Finance, American Finance Association, vol. 49(4), pages 1127-1161, September.
    15. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    16. Meitz, Mika & Terasvirta, Timo, 2006. "Evaluating Models of Autoregressive Conditional Duration," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 104-124, January.
    17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    18. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," LIDAM Discussion Papers CORE 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    20. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    21. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    22. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    23. Liu, Yan & Luger, Richard, 2009. "Efficient estimation of copula-GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2284-2297, April.
    24. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hautsch, Nikolaus & Okhrin, Ostap & Ristig, Alexander, 2014. "Efficient iterative maximum likelihood estimation of high-parameterized time series models," CFS Working Paper Series 450, Center for Financial Studies (CFS).
    2. repec:hum:wpaper:sfb649dp2014-010 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodnar, Taras & Hautsch, Nikolaus, 2016. "Dynamic conditional correlation multiplicative error processes," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 41-67.
    2. repec:hum:wpaper:sfb649dp2012-044 is not listed on IDEAS
    3. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    5. Cipollini, Fabrizio & Gallo, Giampiero M., 2025. "Multiplicative Error Models: 20 years on," Econometrics and Statistics, Elsevier, vol. 33(C), pages 209-229.
    6. Cipollini, Fabrizio & Gallo, Giampiero M., 2025. "Multiplicative Error Models: 20 years on," Econometrics and Statistics, Elsevier, vol. 33(C), pages 209-229.
    7. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    8. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
    9. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    10. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    11. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    12. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    13. Isuru Ratnayake & V. A. Samaranayake, 2022. "Threshold Asymmetric Conditional Autoregressive Range (TACARR) Model," Papers 2202.03351, arXiv.org, revised Mar 2022.
    14. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    15. Zhicheng Li & Haipeng Xing & Xinyun Chen, 2019. "A multifactor regime-switching model for inter-trade durations in the limit order market," Papers 1912.00764, arXiv.org.
    16. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    17. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    18. Wei Sun & Svetlozar Rachev & Frank Fabozzi & Petko Kalev, 2008. "Fractals in trade duration: capturing long-range dependence and heavy tailedness in modeling trade duration," Annals of Finance, Springer, vol. 4(2), pages 217-241, March.
    19. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, September.
    20. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    21. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, January.
    22. Wolfgang K. Härdle & Nikolaus Hautsch & Andrija Mihoci, 2015. "Local Adaptive Multiplicative Error Models for High‐Frequency Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 529-550, June.
    23. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.

    More about this item

    Keywords

    multiplicative error model; trading processes; copula; DCC-GARCH; liquidity risk;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2012-044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.