IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v17y2014i04ns021902491450023x.html
   My bibliography  Save this article

Calibrating The Smile With Multivariate Time-Changed Brownian Motion And The Esscher Transform

Author

Listed:
  • GIAN LUCA TASSINARI

    (Department of Mathematics, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato, 5, 40126, Bologna, Italy)

  • MICHELE LEONARDO BIANCHI

    (Regulation and Macroprudential Analysis Department, Bank of Italy, Via Milano 53, 00184, Rome, Italy)

Abstract

In this study, we investigate two multivariate time-changed Brownian motion option pricing models in which the connection between the historical measure P and the risk-neutral measure Q is given by the Esscher transform. The models incorporate skewness, kurtosis and more complex dependence structures among stocks log-returns than the simple correlation matrix. The two models can be seen as a multivariate extension of the normal inverse Gaussian (NIG) model and the variance gamma (VG) model, respectively. We discuss two possible approaches to estimate historical asset returns and calibrate univariate option implied volatilities. While the first approach considers only time series of log-returns, the second approach makes use of both time series of log-returns and univariate observed volatility surfaces. To calibrate the models, there is no need of liquid multivariate derivative quotes.

Suggested Citation

  • Gian Luca Tassinari & Michele Leonardo Bianchi, 2014. "Calibrating The Smile With Multivariate Time-Changed Brownian Motion And The Esscher Transform," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-34.
  • Handle: RePEc:wsi:ijtafx:v:17:y:2014:i:04:n:s021902491450023x
    DOI: 10.1142/S021902491450023X
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S021902491450023X
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S021902491450023X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florence Guillaume, 2013. "The αVG model for multivariate asset pricing: calibration and extension," Review of Derivatives Research, Springer, vol. 16(1), pages 25-52, April.
    2. Elisa Luciano & Wim Schoutens, 2006. "A multivariate jump-driven financial asset model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 385-402.
    3. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    4. Gian Luca Tassinari & Corrado Corradi, 2013. "Pricing equity and debt tranches of collateralized funds of hedge fund obligations: An approach based on stochastic time change and Esscher-transformed martingale measure," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1991-2010, December.
    5. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    6. Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2018. "Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 339-378, March.
    7. Marc Yor & Dilip B. Madan & Hélyette Geman, 2002. "Stochastic volatility, jumps and hidden time changes," Finance and Stochastics, Springer, vol. 6(1), pages 63-90.
    8. S. R. Hurst & Eckhard Platen & S. T. Rachev, 1999. "Option pricing for a logstable asset price model," Published Paper Series 1999-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    9. Marco Corazza & Florence Legros & Cira Perna & Marilena Sibillo, 2017. "Mathematical and Statistical Methods for Actuarial Sciences and Finance," Post-Print hal-01776135, HAL.
    10. Reiichiro Kawai & Arturo Kohatsu-Higa, 2010. "Computation of Greeks and Multidimensional Density Estimation for Asset Price Models with Time-Changed Brownian Motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 301-321.
    11. Giovanni Barone Adesi & Robert F. Engle & Loriano Mancini, 2014. "A GARCH Option Pricing Model with Filtered Historical Simulation," Palgrave Macmillan Books, in: Giovanni Barone Adesi (ed.), Simulating Security Returns: A Filtered Historical Simulation Approach, chapter 4, pages 66-108, Palgrave Macmillan.
    12. Wu, Yang-Che & Liao, Szu-Lang & Shyu, So-De, 2009. "Closed-form valuations of basket options using a multivariate normal inverse Gaussian model," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 95-102, February.
    13. Sebastian Kring & Svetlozar T. Rachev & Markus Höchstötter & Frank J. Fabozzi & Michele Leonardo Bianchi, 2009. "Multi-tail generalized elliptical distributions for asset returns," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 272-291, July.
    14. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    15. Reiichiro Kawai, 2009. "A multivariate Levy process model with linear correlation," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 597-606.
    16. Simon Hurst & Eckhard Platen & Svetlozar Rachev, 1997. "Subordinated Market Index Models: A Comparison," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 4(2), pages 97-124, May.
    17. Hélyette Geman & Dilip B. Madan & Marc Yor, 2001. "Time Changes for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 79-96, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Leonardo Bianchi & Gian Luca Tassinari, 2018. "Forward-looking portfolio selection with multivariate non-Gaussian models and the Esscher transform," Papers 1805.05584, arXiv.org, revised May 2018.
    2. Michele Leonardo Bianchi, 2018. "Are multi-factor Gaussian term structure models still useful? An empirical analysis on Italian BTPs," Papers 1805.09996, arXiv.org.
    3. Michele Leonardo Bianchi & Gian Luca Tassinari & Frank J. Fabozzi, 2016. "Riding With The Four Horsemen And The Multivariate Normal Tempered Stable Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-28, June.
    4. Massimo Arnone & Michele Leonardo Bianchi & Anna Grazia Quaranta & Gian Luca Tassinari, 2021. "Catastrophic risks and the pricing of catastrophe equity put options," Computational Management Science, Springer, vol. 18(2), pages 213-237, June.
    5. Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2018. "Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 339-378, March.
    6. Hasan Fallahgoul & Gregoire Loeper, 2021. "Modelling tail risk with tempered stable distributions: an overview," Annals of Operations Research, Springer, vol. 299(1), pages 1253-1280, April.
    7. Michele Leonardo Bianchi & Asmerilda Hitaj & Gian Luca Tassinari, 2020. "Multivariate non-Gaussian models for financial applications," Papers 2005.06390, arXiv.org.
    8. Hasan A. Fallahgoul & Young S. Kim & Frank J. Fabozzi & Jiho Park, 2019. "Quanto Option Pricing with Lévy Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1279-1308, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2018. "Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 339-378, March.
    2. Hasan A. Fallahgoul & Young S. Kim & Frank J. Fabozzi & Jiho Park, 2019. "Quanto Option Pricing with Lévy Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1279-1308, March.
    3. Michele Leonardo Bianchi & Asmerilda Hitaj & Gian Luca Tassinari, 2020. "Multivariate non-Gaussian models for financial applications," Papers 2005.06390, arXiv.org.
    4. Michele Leonardo Bianchi & Gian Luca Tassinari, 2018. "Forward-looking portfolio selection with multivariate non-Gaussian models and the Esscher transform," Papers 1805.05584, arXiv.org, revised May 2018.
    5. Hasan Fallahgoul & Gregoire Loeper, 2021. "Modelling tail risk with tempered stable distributions: an overview," Annals of Operations Research, Springer, vol. 299(1), pages 1253-1280, April.
    6. Kanniainen, Juho & Piché, Robert, 2013. "Stock price dynamics and option valuations under volatility feedback effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 722-740.
    7. Michele Leonardo Bianchi & Gian Luca Tassinari & Frank J. Fabozzi, 2016. "Riding With The Four Horsemen And The Multivariate Normal Tempered Stable Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-28, June.
    8. Kanniainen, Juho & Lin, Binghuan & Yang, Hanxue, 2014. "Estimating and using GARCH models with VIX data for option valuation," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 200-211.
    9. Boris Buchmann & Benjamin Kaehler & Ross Maller & Alexander Szimayer, 2015. "Multivariate Subordination using Generalised Gamma Convolutions with Applications to V.G. Processes and Option Pricing," Papers 1502.03901, arXiv.org, revised Oct 2016.
    10. Florence Guillaume, 2018. "Multivariate Option Pricing Models With Lévy And Sato Vg Marginal Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-26, March.
    11. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    12. Thilini Mahanama & Abootaleb Shirvani & Svetlozar Rachev, 2022. "A Natural Disasters Index," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 263-284, April.
    13. Christoffersen, Peter & Feunou, Bruno & Jacobs, Kris & Meddahi, Nour, 2014. "The Economic Value of Realized Volatility: Using High-Frequency Returns for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 663-697, June.
    14. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    15. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    16. Luciano, Elisa, 2006. "Copulas and dependence models in credit risk: diffusions versus jumps," MPRA Paper 59638, University Library of Munich, Germany.
    17. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    18. Holger Fink & Stefan Mittnik, 2021. "Quanto Pricing beyond Black–Scholes," JRFM, MDPI, vol. 14(3), pages 1-27, March.
    19. Thomas Fung & Eugene Seneta, 2010. "Tail dependence and skew distributions," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 327-333.
    20. Florence Guillaume, 2013. "The αVG model for multivariate asset pricing: calibration and extension," Review of Derivatives Research, Springer, vol. 16(1), pages 25-52, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:17:y:2014:i:04:n:s021902491450023x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.