IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/1999044.html
   My bibliography  Save this paper

Time transformations, intraday data and volatility models

Author

Listed:
  • GIOT, Pierre

    (Center for Operations Research and Econometrics (CORE), Université catholique de Louvain (UCL), Louvain la Neuve, Belgium)

Abstract

In this paper, we focus on the trade and quote data for the IBM stock traded at the NYSE.We present two different frameworks for analyzing this dataset. First, using regularly sampled observations, we characterize the intraday volatility of the mid-point of the bid-ask quotes by estimating GARCH and EGARCH models, with intraday seasonalitybeing accounted for. We also highlight the impact of characteristics of the trade process (traded volume, number of trades and average volume per trade) on the volatility specifications. Secondly, we deal directly with the irregularly spaced data. We review two time transformations that allowa thinning of the original dataset such that new durations are defined. The newly defined price and volume durations are characterized and the performance of the Log-ACD model for modelling these durations is assessed. Moreover, price durations allowan easy computation of intraday volatility and this method compares favorablyto ARCH estimations.

Suggested Citation

  • GIOT, Pierre, 1999. "Time transformations, intraday data and volatility models," LIDAM Discussion Papers CORE 1999044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:1999044
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp1999.html
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    2. Serge Darolles & Christian Gouriéroux & Gaëlle Le Fol, 2000. "Intraday Transaction Price Dynamics," Annals of Economics and Statistics, GENES, issue 60, pages 207-238.
    3. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    4. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    6. Dominique M. Guillaume & Olivier V. Pictet & Michel M. Dacorogna, "undated". "On the intra-daily performance of GARCH processes," Working Papers 1994-07-31, Olsen and Associates.
    7. Glosten, Lawrence R. & Harris, Lawrence E., 1988. "Estimating the components of the bid/ask spread," Journal of Financial Economics, Elsevier, vol. 21(1), pages 123-142, May.
    8. repec:dau:papers:123456789/12729 is not listed on IDEAS
    9. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
    10. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    11. Gourieroux, Christian & Jasiak, Joanna & Le Fol, Gaelle, 1999. "Intra-day market activity," Journal of Financial Markets, Elsevier, vol. 2(3), pages 193-226, August.
    12. Gaëlle Le Fol & Mercier Ludovic, 1998. "Time Deformation: Definition and Comparisons," Post-Print halshs-00586097, HAL.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Jones, Charles M & Kaul, Gautam & Lipson, Marc L, 1994. "Transactions, Volume, and Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 7(4), pages 631-651.
    15. Brock, William A. & Kleidon, Allan W., 1992. "Periodic market closure and trading volume : A model of intraday bids and asks," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 451-489.
    16. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    17. Robert F. Engle & Asger Lunde, 2003. "Trades and Quotes: A Bivariate Point Process," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 159-188.
    18. Richard B. Olsen & Ulrich A. Müller & Michel M. Dacorogna & Olivier V. Pictet & Rakhal R. Davé & Dominique M. Guillaume, 1997. "From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 95-129.
    19. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    20. BAUWENS, Luc & GIOT, Pierre, 1998. "Asymmetric ACD models: introducing price information in ACD models with a two state transition model," LIDAM Discussion Papers CORE 1998044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
    22. Ederington, Louis H & Lee, Jae Ha, 1993. "How Markets Process Information: News Releases and Volatility," Journal of Finance, American Finance Association, vol. 48(4), pages 1161-1191, September.
    23. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    24. Engle, Robert F. & Russell, Jeffrey R., 1997. "Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 187-212, June.
    25. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    26. Bollerslev, Tim & Domowitz, Ian, 1993. "Trading Patterns and Prices in the Interbank Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 48(4), pages 1421-1443, September.
    27. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    28. Grammig, Joachim & Wellner, Marc, 1999. "Modeling the interdependence of volatility and inter-transaction duration processes," SFB 373 Discussion Papers 1999,21, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    29. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    30. Hafner, C., 1997. "Estimating High Frequency Foreign Exchange Rate Volatility with Nonparametric ARCH Models," SFB 373 Discussion Papers 1997,18, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    31. Eric Ghysels & Joann Jasiak, 1997. "GARCH for Irregularly Spaced Data: The ACD-GARCH Model," CIRANO Working Papers 97s-06, CIRANO.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
    2. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    3. DOLADO , Juan J. & RODRIGUEZ-POO, Juan & VEREDAS, David, 2004. "Testing weak exogeneity in the exponential family : an application to financial point processes," LIDAM Discussion Papers CORE 2004049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Pierre Giot & Joachim Grammig, 2006. "How large is liquidity risk in an automated auction market?," Empirical Economics, Springer, vol. 30(4), pages 867-887, January.
    5. Steland, Ansgar, 2004. "NP-optimal kernels for nonparametric sequential detection rules," Technical Reports 2004,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Matos, João Manuel Gonçalves Amaro de & Fernandes, Marcelo, 2001. "Testing the Markov property with ultra high frequency financial data," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 414, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    7. Filip Zikes & Vít Bubák, 2006. "Trading Intensity and Intraday Volatility on the Prague Stock Exchange: Evidence from an Autoregressive Conditional Duration Model (in English)," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 56(5-6), pages 223-245, May.
    8. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
    9. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    10. Magdalena Osinska & Andrzej Dobrzynski & Yochanan Shachmurove, 2016. "Performance Of American And Russian Joint Stock Companies On Financial Market. A Microstructure Perspective," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(4), pages 819-851, December.
    11. GIOT, Pierre, 2000. "Intraday value-at-risk," LIDAM Discussion Papers CORE 2000045, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Xiaodong Jin & Janusz Kawczak, 2003. "Birnbaum-Saunders and Lognormal Kernel Estimators for Modelling Durations in High Frequency Financial Data," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 103-124, May.
    13. Pipat Wongsaart & Jiti Gao, 2011. "Nonparametric Kernel Testing in Semiparametric Autoregressive Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 18/11, Monash University, Department of Econometrics and Business Statistics.
    14. Fatima Sol Murta, 2007. "The Money Market Daily Session :an UHF-GARCH Model Applied to the Portuguese Case Before and After the Introduction Of the Minimum Reserve System of the Single Monetary Policy," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 50(3), pages 285-314.
    15. Takayuki Morimoto, 2004. "Estimating and forecasting instantaneous volatility through a duration model : An assessment based on VaR," Econometric Society 2004 Far Eastern Meetings 592, Econometric Society.
    16. Denisa Georgiana Banulescu & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2013. "High-Frequency Risk Measures," Working Papers halshs-00859456, HAL.
    17. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    18. Katarzyna Bien-Barkowska, 2011. "Distribution Choice for the Asymmetric ACD Models," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 11, pages 55-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    2. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    3. Nikolaus Hautsch, 1999. "Analyzing the Time between Trades with a Gamma Compounded Hazard Model. An Application to LIFFE Bund Future Transactions," Finance 9904002, University Library of Munich, Germany.
    4. Gerhard, Frank & Hess, Dieter & Pohlmeier, Winfried, 1998. "What a Difference a Day Makes: On the Common Market Microstructure of Trading Days," CoFE Discussion Papers 98/01, University of Konstanz, Center of Finance and Econometrics (CoFE).
    5. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    6. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "Determinants of bid and ask quotes and implications for the cost of trading," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 656-678, September.
    7. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    8. Sylwia Nowak, 2008. "How Do Public Announcements Affect The Frequency Of Trading In U.S. Airline Stocks?," CAMA Working Papers 2008-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    9. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    10. Jondeau, Eric & Lahaye, Jérôme & Rockinger, Michael, 2015. "Estimating the price impact of trades in a high-frequency microstructure model with jumps," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 205-224.
    11. Gerhard, Frank & Hautsch, Nikolaus, 2002. "Volatility estimation on the basis of price intensities," Journal of Empirical Finance, Elsevier, vol. 9(1), pages 57-89, January.
    12. Pascual, Roberto, 2000. "Adverse selection costs, trading activity and liquidity in the NYSE: an empirical analysis in a dynamic context," UC3M Working papers. Economics 7276, Universidad Carlos III de Madrid. Departamento de Economía.
    13. Ferriani, Fabrizio, 2010. "Informed and uninformed traders at work: evidence from the French market," MPRA Paper 24487, University Library of Munich, Germany.
    14. Chen, Tao & Li, Jie & Cai, Jun, 2008. "Information content of inter-trade time on the Chinese market," Emerging Markets Review, Elsevier, vol. 9(3), pages 174-193, September.
    15. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    16. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    17. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    18. Georges Dionne & Xiaozhou Zhou, 2020. "The dynamics of ex-ante weighted spread: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 593-617, April.
    19. Hartmann, Philipp, 1999. "Trading volumes and transaction costs in the foreign exchange market: Evidence from daily dollar-yen spot data," Journal of Banking & Finance, Elsevier, vol. 23(5), pages 801-824, May.
    20. Spierdijk, Laura, 2004. "An empirical analysis of the role of the trading intensity in information dissemination on the NYSE," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 163-184, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:1999044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.