On the macroeconomic fundamentals of long-term volatilities and dynamic correlations in COMEX copper futures
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ruobing Liu & Jianhui Yang & Chuan-Yang Ruan, 2019. "The Impact of Macroeconomic News on Chinese Futures," IJFS, MDPI, vol. 7(4), pages 1-14, October.
- Juan Ignacio Guzmán & Enrique Silva, 2018. "Copper price determination: fundamentals versus non-fundamentals," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 31(3), pages 283-300, October.
- Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Hammoudeh, Shawkat & Yuan, Yuan, 2008. "Metal volatility in presence of oil and interest rate shocks," Energy Economics, Elsevier, vol. 30(2), pages 606-620, March.
- Elder, John & Miao, Hong & Ramchander, Sanjay, 2012. "Impact of macroeconomic news on metal futures," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 51-65.
- Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2021. "Economic drivers of commodity volatility: The case of copper," Resources Policy, Elsevier, vol. 73(C).
- Zheng, Yan & Zhou, Min & Wen, Fenghua, 2021. "Asymmetric effects of oil shocks on carbon allowance price: Evidence from China," Energy Economics, Elsevier, vol. 97(C).
- Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
- Zhang, Yongmin & Wang, Ruizhi, 2022. "COVID-19 impact on commodity futures volatilities," Finance Research Letters, Elsevier, vol. 47(PA).
- Buncic, Daniel & Moretto, Carlo, 2015.
"Forecasting copper prices with dynamic averaging and selection models,"
The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 1-38.
- Buncic, Daniel & Moretto, Carlo, 2014. "Forecasting Copper Prices with Dynamic Averaging and Selection Models," Economics Working Paper Series 1430, University of St. Gallen, School of Economics and Political Science.
- Smith, Kenneth L & Bracker, Kevin, 2003. "Forecasting Changes in Copper Futures Volatility with GARCH Models Using an Iterated Algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 20(3), pages 245-265, May.
- Nenavath Sreenu & K.S. S. Rao & Kishan D, 2021. "The macroeconomic variables impact on commodity futures volatility: A study on Indian markets," Cogent Business & Management, Taylor & Francis Journals, vol. 8(1), pages 1939929-193, January.
- Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
- Sadorsky, Perry, 2014. "Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat," Energy Economics, Elsevier, vol. 43(C), pages 72-81.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zian Wang & Xinyi Lu, 2024. "COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning," Papers 2409.08356, arXiv.org.
- Nguyen, Hoang & Virbickaitė, Audronė, 2023.
"Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models,"
Energy Economics, Elsevier, vol. 124(C).
- Nguyen, Hoang & Virbickaite, Audrone, 2022. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Working Papers 2022:5, Örebro University, School of Business.
- Nguyen, Hoang & Javed, Farrukh, 2023.
"Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach,"
Journal of Empirical Finance, Elsevier, vol. 73(C), pages 272-292.
- Nguyen, Hoang & Javed, Farrukh, 2021. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Working Papers 2021:15, Örebro University, School of Business.
- Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2021. "Economic drivers of commodity volatility: The case of copper," Resources Policy, Elsevier, vol. 73(C).
- Dinh, Theu & Goutte, Stéphane & Nguyen, Duc Khuong & Walther, Thomas, 2022.
"Economic drivers of volatility and correlation in precious metal markets,"
Journal of Commodity Markets, Elsevier, vol. 28(C).
- Theu Dinh & Stéphane Goutte & Khuong Nguyen & Thomas Walther, 2022. "Economic drivers of volatility and correlation in precious metal markets," Working Papers halshs-03672469, HAL.
- Stewart, Shamar L. & Isengildina Massa, Olga, 2024. "Food & Oil Price Volatility Dynamics: Insights from a TVP-SVAR-DCC-MIDAS Model," 2024 Annual Meeting, July 28-30, New Orleans, LA 343936, Agricultural and Applied Economics Association.
- Raza, Syed Ali & Masood, Amna & Benkraiem, Ramzi & Urom, Christian, 2023.
"Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach,"
Energy Economics, Elsevier, vol. 120(C).
- Syed Ali Raza & Amna Masood & Ramzi Benkraiem & Christian Urom, 2023. "Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach," Post-Print hal-04080872, HAL.
- Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
- Julien Chevallier, 2020.
"COVID-19 Outbreak and CO 2 Emissions: Macro-Financial Linkages,"
JRFM, MDPI, vol. 14(1), pages 1-18, December.
- Julien Chevallier, 2021. "Covid-19 Outbreak and CO2 Emissions: Macro-Financial Linkages," Working Papers 2021-004, Department of Research, Ipag Business School.
- Liu, Min & Lee, Chien-Chiang, 2022. "Is gold a long-run hedge, diversifier, or safe haven for oil? Empirical evidence based on DCC-MIDAS," Resources Policy, Elsevier, vol. 76(C).
- Guo, Jin, 2018. "Co-movement of international copper prices, China's economic activity, and stock returns: Structural breaks and volatility dynamics," Global Finance Journal, Elsevier, vol. 36(C), pages 62-77.
- Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023.
"Bayesian predictive distributions of oil returns using mixed data sampling volatility models,"
Resources Policy, Elsevier, vol. 86(PA).
- Virbickaite, Audrone & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian Predictive Distributions of Oil Returns Using Mixed Data Sampling Volatility Models," Working Papers 2023:7, Örebro University, School of Business.
- Liu, Han & Yang, Peng & He, Yongda & Oxley, Les & Guo, Pengwei, 2024. "Exploring the influence of the geopolitical risks on the natural resource price volatility and correlation: Evidence from DCC-MIDAS-X model," Energy Economics, Elsevier, vol. 129(C).
- Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
- Belcaid, Karim & El Ghini, Ahmed, 2019. "U.S., European, Chinese economic policy uncertainty and Moroccan stock market volatility," The Journal of Economic Asymmetries, Elsevier, vol. 20(C).
- Ma, Richie Ruchuan & Xiong, Tao, 2021. "Price explosiveness in nonferrous metal futures markets," Economic Modelling, Elsevier, vol. 94(C), pages 75-90.
- Huawei Niu & Tianyu Liu, 2024. "Forecasting the volatility of European Union allowance futures with macroeconomic variables using the GJR-GARCH-MIDAS model," Empirical Economics, Springer, vol. 67(1), pages 75-96, July.
- Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2020. "A random walk through the trees: Forecasting copper prices using decision learning methods," Resources Policy, Elsevier, vol. 69(C).
- repec:eee:finlet:v:24:y:2018:i:c:p:56-63 is not listed on IDEAS
- Ye, Wuyi & Guo, Ranran & Deschamps, Bruno & Jiang, Ying & Liu, Xiaoquan, 2021. "Macroeconomic forecasts and commodity futures volatility," Economic Modelling, Elsevier, vol. 94(C), pages 981-994.
- Andrea BUCCI, 2017.
"Forecasting Realized Volatility A Review,"
Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
- Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.08355. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.