IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v89y2023ics1057521923003356.html
   My bibliography  Save this article

Less is more? New evidence from stock market volatility predictability

Author

Listed:
  • Lu, Fei
  • Ma, Feng
  • Guo, Qiang

Abstract

The complex nature of stock market volatility has motivated researchers to apply a variety of predictors to obtain reliable predictive information for precise forecasting. This study seeks to examine the effectiveness of the novel Global Financial Uncertainty (GFU) indices, comprising of only five sub-indices, in predicting stock market volatility using the widely used mixed-data sampling (MIDAS) model. The results demonstrate the remarkable and stable predictive power of GFU, even during crises and global financial uncertainty shocks. Specifically, the financial uncertainty index from Europe plays a significant role in our analysis. Importantly, we find that the GFU index outperforms a large number of other indicators in stock volatility forecasting. The statistical and economic significance of the predictive power of GFU is remarkable. Our study provides significant insights for market participants and policymakers that highlight the need to prioritize global financial uncertainty.

Suggested Citation

  • Lu, Fei & Ma, Feng & Guo, Qiang, 2023. "Less is more? New evidence from stock market volatility predictability," International Review of Financial Analysis, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:finana:v:89:y:2023:i:c:s1057521923003356
    DOI: 10.1016/j.irfa.2023.102819
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521923003356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2023.102819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben S. Bernanke & Kenneth N. Kuttner, 2005. "What Explains the Stock Market's Reaction to Federal Reserve Policy?," Journal of Finance, American Finance Association, vol. 60(3), pages 1221-1257, June.
    2. Gino Cenedese & Richard Payne & Lucio Sarno & Giorgio Valente, 2016. "What Do Stock Markets Tell Us about Exchange Rates?," Review of Finance, European Finance Association, vol. 20(3), pages 1045-1080.
    3. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    4. Ambrogio Cesa-Bianchi & M Hashem Pesaran & Alessandro Rebucci & Stijn Van Nieuwerburgh, 2020. "Uncertainty and Economic Activity: A Multicountry Perspective," The Review of Financial Studies, Society for Financial Studies, vol. 33(8), pages 3393-3445.
    5. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    6. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    7. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    8. Lin, Yu & Xiao, Yang & Li, Fuxing, 2020. "Forecasting crude oil price volatility via a HM-EGARCH model," Energy Economics, Elsevier, vol. 87(C).
    9. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    10. Michael Ehrmann & Marcel Fratzscher & Roberto Rigobon, 2011. "Stocks, bonds, money markets and exchange rates: measuring international financial transmission," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 948-974, September.
    11. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    12. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    13. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana & Juan F. Rubio-Ramirez & Martin Uribe, 2011. "Risk Matters: The Real Effects of Volatility Shocks," American Economic Review, American Economic Association, vol. 101(6), pages 2530-2561, October.
    14. Paul Beaudry & Franck Portier, 2006. "Stock Prices, News, and Economic Fluctuations," American Economic Review, American Economic Association, vol. 96(4), pages 1293-1307, September.
    15. Christian Conrad & Karin Loch, 2015. "Anticipating Long‐Term Stock Market Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1090-1114, November.
    16. Lubos Pástor & Pietro Veronesi, 2012. "Uncertainty about Government Policy and Stock Prices," Journal of Finance, American Finance Association, vol. 67(4), pages 1219-1264, August.
    17. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    18. Adlai Fisher & Charles Martineau & Jinfei Sheng, 2022. "Macroeconomic Attention and Announcement Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 35(11), pages 5057-5093.
    19. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    20. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    21. Claessens, Stijn & Klingebiel, Daniela & Schmukler, Sergio L., 2006. "Stock market development and internationalization: Do economic fundamentals spur both similarly?," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 316-350, June.
    22. Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A comprehensive look at financial volatility prediction by economic variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
    23. Manel Youssef & Khaled Mokni & Ahdi Noomen Ajmi, 2021. "Dynamic connectedness between stock markets in the presence of the COVID-19 pandemic: does economic policy uncertainty matter?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    24. He, Feng & Ma, Feng & Wang, Ziwei & Yang, Bohan, 2021. "Asymmetric volatility spillover between oil-importing and oil-exporting countries' economic policy uncertainty and China's energy sector," International Review of Financial Analysis, Elsevier, vol. 75(C).
    25. Worawuth Kongsilp & Cesario Mateus, 2017. "Volatility risk and stock return predictability on global financial crises," China Finance Review International, Emerald Group Publishing Limited, vol. 7(1), pages 33-66, February.
    26. Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
    27. Choudhry, Taufiq & Papadimitriou, Fotios I. & Shabi, Sarosh, 2016. "Stock market volatility and business cycle: Evidence from linear and nonlinear causality tests," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 89-101.
    28. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    29. Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
    30. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    31. Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022. "Scaled PCA: A New Approach to Dimension Reduction," Management Science, INFORMS, vol. 68(3), pages 1678-1695, March.
    32. Giovanni Caggiano & Efrem Castelnuovo, 2023. "Global financial uncertainty," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 432-449, April.
    33. Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
    34. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    35. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    36. Balcilar, Mehmet & Gupta, Rangan & Kim, Won Joong & Kyei, Clement, 2019. "The role of economic policy uncertainties in predicting stock returns and their volatility for Hong Kong, Malaysia and South Korea," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 150-163.
    37. Mark T. Hon & Jack Strauss & Soo‐Keong Yong, 2004. "Contagion in financial markets after September 11: myth or reality?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 27(1), pages 95-114, March.
    38. M. Karanasos & S. Yfanti & J. Hunter, 2022. "Emerging stock market volatility and economic fundamentals: the importance of US uncertainty spillovers, financial and health crises," Annals of Operations Research, Springer, vol. 313(2), pages 1077-1116, June.
    39. Ma, Feng & Liao, Yin & Zhang, Yaojie & Cao, Yang, 2019. "Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 40-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    2. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2024. "Machine-learning stock market volatility: Predictability, drivers, and economic value," International Review of Financial Analysis, Elsevier, vol. 94(C).
    3. Lu, Fei & Ma, Feng & Feng, Lin, 2024. "Carbon dioxide emissions and economic growth: New evidence from GDP forecasting," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    4. Lu, Fei & Ma, Feng & Bouri, Elie & Liao, Yin, 2024. "Do commodity futures have a steering effect on the spot stock market in China? New evidence from volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
    2. Guo, Yangli & Ma, Feng & Li, Haibo & Lai, Xiaodong, 2022. "Oil price volatility predictability based on global economic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
    3. Ma, Feng & Guo, Yangli & Chevallier, Julien & Huang, Dengshi, 2022. "Macroeconomic attention, economic policy uncertainty, and stock volatility predictability," International Review of Financial Analysis, Elsevier, vol. 84(C).
    4. Dai, Zhifeng & Chang, Xiaoming, 2021. "Forecasting stock market volatility: Can the risk aversion measure exert an important role?," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    5. Guo, Yangli & He, Feng & Liang, Chao & Ma, Feng, 2022. "Oil price volatility predictability: New evidence from a scaled PCA approach," Energy Economics, Elsevier, vol. 105(C).
    6. Guo, Xiaozhu & Huang, Dengshi & Li, Xiafei & Liang, Chao, 2023. "Are categorical EPU indices predictable for carbon futures volatility? Evidence from the machine learning method," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 672-693.
    7. Mengxi He & Xianfeng Hao & Yaojie Zhang & Fanyi Meng, 2021. "Forecasting stock return volatility using a robust regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1463-1478, December.
    8. Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
    9. Wang, Jiqian & He, Xiaofeng & Ma, Feng & Li, Pan, 2022. "Uncertainty and oil volatility: Evidence from shrinkage method," Resources Policy, Elsevier, vol. 75(C).
    10. Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
    11. Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
    12. Li, Dakai, 2024. "Forecasting stock market realized volatility: The role of investor attention to the price of petroleum products," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 115-122.
    13. Lu, Fei & Ma, Feng & Hu, Shiyang, 2024. "Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting," Energy Economics, Elsevier, vol. 129(C).
    14. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    15. Dai, Zhifeng & Zhang, Xiaotong & Li, Tingyu, 2023. "Forecasting stock return volatility in data-rich environment: A new powerful predictor," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    16. Li, Tao & Ma, Feng & Zhang, Xuehua & Zhang, Yaojie, 2020. "Economic policy uncertainty and the Chinese stock market volatility: Novel evidence," Economic Modelling, Elsevier, vol. 87(C), pages 24-33.
    17. Lu, Fei & Ma, Feng & Bouri, Elie & Liao, Yin, 2024. "Do commodity futures have a steering effect on the spot stock market in China? New evidence from volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
    18. Jiqian Wang & Rangan Gupta & Oğuzhan Çepni & Feng Ma, 2023. "Forecasting international REITs volatility: the role of oil-price uncertainty," The European Journal of Finance, Taylor & Francis Journals, vol. 29(14), pages 1579-1597, September.
    19. Dai, Zhifeng & Zhou, Huiting & Wen, Fenghua & He, Shaoyi, 2020. "Efficient predictability of stock return volatility: The role of stock market implied volatility," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    20. Souropanis, Ioannis & Vivian, Andrew, 2023. "Forecasting realized volatility with wavelet decomposition," Journal of Empirical Finance, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:89:y:2023:i:c:s1057521923003356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.