IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1703.10825.html
   My bibliography  Save this paper

Quadratic approximation of slow factor of volatility in a Multi-factor Stochastic volatility Model

Author

Listed:
  • Gifty Malhotra
  • R. Srivastava
  • H. C. Taneja

Abstract

In the present work, we propose a new multifactor stochastic volatility model in which slow factor of volatility is approximated by a parabolic arc. We retain ourselves to the perturbation technique to obtain approximate expression for European option prices. We introduce the notion of modified Black-Scholes price. We obtain a simplified expression for European option price which is perturbed around the modified Black-Scholes price and have also obtained the expression of modified price in terms of Black-Scholes price.

Suggested Citation

  • Gifty Malhotra & R. Srivastava & H. C. Taneja, 2017. "Quadratic approximation of slow factor of volatility in a Multi-factor Stochastic volatility Model," Papers 1703.10825, arXiv.org.
  • Handle: RePEc:arx:papers:1703.10825
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1703.10825
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    2. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    3. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    4. Ball, Clifford A. & Roma, Antonio, 1994. "Stochastic Volatility Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(4), pages 589-607, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gifty Malhotra & R. Srivastava & H. C. Taneja, 2018. "Quadratic approximation of the slow factor of volatility in a multifactor stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 607-624, May.
    2. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    3. Gifty Malhotra & R. Srivastava & H. C. Taneja, 2019. "Comparative Study of Two Extensions of Heston Stochastic Volatility Model," Papers 1912.10237, arXiv.org.
    4. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    5. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    6. Vicky Henderson & David Hobson, 2001. "Passport options with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 97-118.
    7. Recchioni, M.C. & Sun, Y., 2016. "An explicitly solvable Heston model with stochastic interest rate," European Journal of Operational Research, Elsevier, vol. 249(1), pages 359-377.
    8. Antoine Jacquier & Konstantinos Spiliopoulos, 2018. "Pathwise moderate deviations for option pricing," Papers 1803.04483, arXiv.org, revised Dec 2018.
    9. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    10. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    11. Fabio Antonelli & Sergio Scarlatti, 2009. "Pricing options under stochastic volatility: a power series approach," Finance and Stochastics, Springer, vol. 13(2), pages 269-303, April.
    12. Naoto Kunitomo & Yong-Jin Kim, 2001. "Effects of Stochastic Interest Rates and Volatility on Contingent Claims (Revised Version)," CIRJE F-Series CIRJE-F-129, CIRJE, Faculty of Economics, University of Tokyo.
    13. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    14. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    15. Kanniainen, Juho & Piché, Robert, 2013. "Stock price dynamics and option valuations under volatility feedback effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 722-740.
    16. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    17. Aase, Knut K., 2000. "An equilibrium asset pricing model based on Lévy processes: relations to stochastic volatility, and the survival hypothesis," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 345-363, December.
    18. Matthew Lorig, 2011. "Pricing Derivatives on Multiscale Diffusions: an Eigenfunction Expansion Approach," Papers 1109.0738, arXiv.org, revised Apr 2012.
    19. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1703.10825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.