IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/122287.html
   My bibliography  Save this paper

Periodically homogeneous Markov chains: The discrete state space case

Author

Listed:
  • Aknouche, Abdelhakim

Abstract

state spaces with periodically time-varying transition probabilities is introduced. The finite-dimensional probability distributions of these time-periodic chains are first studied and their correspondence with the marginal distributions and transition probabilities is shown. Then, the concepts of periodic stability/regularity and limiting behaviors are proposed. The communicability and classification of states necessary for establishing periodic stability are then examined. In particular, periodic irreducibility and the main solidarity/class properties are presented, namely periodic recurrence, periodic positive recurrence, periodic transience, and periodic aperiodicity. Furthermore, sufficient conditions for periodic stochastic stability of time-periodic Markov chains are derived. Finally, various applications to some operations research models and time series analysis are considered. In particular, periodic Markov decision processes, periodic integer-valued time series models, and periodic Markov-switching time series models are examined.

Suggested Citation

  • Aknouche, Abdelhakim, 2024. "Periodically homogeneous Markov chains: The discrete state space case," MPRA Paper 122287, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:122287
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/122287/1/MPRA_paper_122287.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/122297/1/MPRA_paper_122297.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Francq & Michel Roussignol & Jean‐Michel Zakoian, 2001. "Conditional Heteroskedasticity Driven by Hidden Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 197-220, March.
    2. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    3. Aknouche, Abdelhakim & Francq, Christian, 2021. "Count And Duration Time Series With Equal Conditional Stochastic And Mean Orders," Econometric Theory, Cambridge University Press, vol. 37(2), pages 248-280, April.
    4. Abdelhakim Aknouche & Christian Francq, 2022. "Stationarity and ergodicity of Markov switching positive conditional mean models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 436-459, May.
    5. Yao, J., 2001. "On square-integrability of an AR process with Markov switching," Statistics & Probability Letters, Elsevier, vol. 52(3), pages 265-270, April.
    6. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    7. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
    8. Abdelouahab Bibi & Abdelhakim Aknouche, 2010. "Yule–Walker type estimators in periodic bilinear models: strong consistency and asymptotic normality," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(1), pages 1-30, March.
    9. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    10. Eric Ghysels & Robert E. McCulloch & Ruey S. Tsay, 1998. "Bayesian inference for periodic regime-switching models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(2), pages 129-143.
    11. Jens Ove Riis, 1965. "Discounted Markov Programming in a Periodic Process," Operations Research, INFORMS, vol. 13(6), pages 920-929, December.
    12. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    13. Abdelhakim Aknouche & Nadia Rabehi, 2010. "On an independent and identically distributed mixture bilinear time‐series model," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 113-131, March.
    14. Ghysels, Eric, 2000. "Time-Series Model With Periodic Stochastic Regime Switching," Macroeconomic Dynamics, Cambridge University Press, vol. 4(4), pages 467-486, December.
    15. Abdelhakim Aknouche & Sara Bendjeddou & Nassim Touche, 2018. "Negative Binomial Quasi†Likelihood Inference for General Integer†Valued Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(2), pages 192-211, March.
    16. Franses, Philip Hans, 1996. "Periodicity and Stochastic Trends in Economic Time Series," OUP Catalogue, Oxford University Press, number 9780198774549.
    17. Aknouche, Abdelhakim & Bentarzi, Wissam & Demouche, Nacer, 2018. "On periodic ergodicity of a general periodic mixed Poisson autoregression," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 15-21.
    18. Aknouche, Abdelhakim & Guerbyenne, Hafida, 2009. "On some probabilistic properties of double periodic AR models," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 407-413, February.
    19. Aknouche, Abdelhakim & Demmouche, Nacer, 2019. "Ergodicity conditions for a double mixed Poisson autoregression," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 6-11.
    20. Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030.
    21. Bader S. Almohaimeed, 2024. "Asymptotic negative binomial quasi-likelihood inference for periodic integer-valued time series models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 53(2), pages 587-606, January.
    22. Abdelhakim Aknouche & Bader Almohaimeed & Stefanos Dimitrakopoulos, 2022. "Periodic autoregressive conditional duration," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 5-29, January.
    23. Cai, Jun, 1994. "A Markov Model of Switching-Regime ARCH," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 309-316, July.
    24. Abdelhakim Aknouche & Eid Al-Eid & Nacer Demouche, 2018. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 485-511, October.
    25. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    26. M. Jacobson & N. Shimkin & A. Shwartz, 2003. "Markov Decision Processes with Slow Scale Periodic Decisions," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 777-800, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aknouche, Abdelhakim & Almohaimeed, Bader & Dimitrakopoulos, Stefanos, 2024. "Noising the GARCH volatility: A random coefficient GARCH model," MPRA Paper 120456, University Library of Munich, Germany, revised 15 Mar 2024.
    2. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    4. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    5. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    6. Su, EnDer, 2017. "Stock index hedging using a trend and volatility regime-switching model involving hedging cost," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 233-254.
    7. King, Daniel & Botha, Ferdi, 2015. "Modelling stock return volatility dynamics in selected African markets," Economic Modelling, Elsevier, vol. 45(C), pages 50-73.
    8. Abdelhakim Aknouche & Christian Francq, 2022. "Stationarity and ergodicity of Markov switching positive conditional mean models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 436-459, May.
    9. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    10. Chaojun Li & Yan Liu, 2020. "Asymptotic Properties of the Maximum Likelihood Estimator in Regime-Switching Models with Time-Varying Transition Probabilities," Papers 2010.04930, arXiv.org, revised Dec 2021.
    11. Aknouche, Abdelhakim & Rabehi, Nadia, 2024. "Inspecting a seasonal ARIMA model with a random period," MPRA Paper 120758, University Library of Munich, Germany.
    12. Kwon, Dream & Lee, Oesook, 2024. "The functional central limit theorem for Markov-switching GARCH model," Economics Letters, Elsevier, vol. 238(C).
    13. Richard D. F. Harris & Murat Mazibas, 2022. "A component Markov regime‐switching autoregressive conditional range model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 650-683, April.
    14. Krämer, Walter, 2008. "Long memory with Markov-Switching GARCH," Economics Letters, Elsevier, vol. 99(2), pages 390-392, May.
    15. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    16. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2020. "Markov-Switching Stochastic Processes in an Active Trading Algorithm in the Main Latin-American Stock Markets," Mathematics, MDPI, vol. 8(6), pages 1-23, June.
    17. Thomas Chuffart, 2015. "Selection Criteria in Regime Switching Conditional Volatility Models," Econometrics, MDPI, vol. 3(2), pages 1-28, May.
    18. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    19. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    20. Haas, Markus & Mittnik, Stefan, 2008. "Multivariate regimeswitching GARCH with an application to international stock markets," CFS Working Paper Series 2008/08, Center for Financial Studies (CFS).

    More about this item

    Keywords

    Time-periodic Markov chains; Harris periodic ergodicity; periodic irreducibility; periodic recurrence; periodic stability; periodic invariant distributions; periodic integer-valued time series models; Markov-switching periodic models; periodic Markov decision process.;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:122287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.