Asymmetric time aggregation and its potential benefits for forecasting annual data
Author
Abstract
Suggested Citation
DOI: 10.1007/s00181-014-0864-0
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Kunst, Robert M. & Franses, Philip Hans, 2010. "Asymmetric Time Aggregation and its Potential Benefits for Forecasting Annual Data," Economics Series 252, Institute for Advanced Studies.
References listed on IDEAS
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Lutkepohl, Helmut, 1981. "A model for non-negative and non-positive distributed lag functions," Journal of Econometrics, Elsevier, vol. 16(2), pages 211-219, June.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005.
"There is a risk-return trade-off after all,"
Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2003. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2003s-26, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2004s-24, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," NBER Working Papers 10913, National Bureau of Economic Research, Inc.
- Stock, James H, 1987. "Measuring Business Cycle Time," Journal of Political Economy, University of Chicago Press, vol. 95(6), pages 1240-1261, December.
- Allen McDowell, 2004. "From the help desk: Polynomial distributed lag models," Stata Journal, StataCorp LP, vol. 4(2), pages 180-189, June.
- Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
- Stock, James H., 1987. "Measuring Business Cycle Time," Scholarly Articles 3425950, Harvard University Department of Economics.
- Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Trading Patterns, Time Deformation and Stochastic Volatility in Foreign Exchange Markets," CIRANO Working Papers 95s-42, CIRANO.
- Man, K. S., 2004. "Linear prediction of temporal aggregates under model misspecification," International Journal of Forecasting, Elsevier, vol. 20(4), pages 659-670.
- Òscar Jordà & Massimiliano Marcellino, 2004.
"Time‐scale transformations of discrete time processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 873-894, November.
- Oscar Jorda & Massimiliano Marcellino, 2003. "Time-Scale Transformations of Discrete-Time Processes," Working Papers 65, University of California, Davis, Department of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"U-MIDAS: MIDAS regressions with unrestricted lag polynomials,"
Discussion Paper Series 1: Economic Studies
2011,35, Deutsche Bundesbank.
- Schumacher, Christian & Marcellino, Massimiliano & Foroni, Claudia, 2012. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," CEPR Discussion Papers 8828, C.E.P.R. Discussion Papers.
- Pyun, Chong Soo & Lee, Sa Young & Nam, Kiseok, 2000. "Volatility and information flows in emerging equity market: A case of the Korean Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 9(4), pages 405-420.
- Robert A. Weigand, 1996. "Trading volume and firm size: A test of the information spillover hypothesis," Review of Financial Economics, John Wiley & Sons, vol. 5(1), pages 47-58, December.
- Richard A. Meese & Andrew K. Rose, 1991.
"An Empirical Assessment of Non-Linearities in Models of Exchange Rate Determination,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 603-619.
- Richard Meese & Andrew K. Rose, 1989. "An empirical assessment of non-linearities in models of exchange rate determination," International Finance Discussion Papers 367, Board of Governors of the Federal Reserve System (U.S.).
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Weigand, Robert A., 1996. "Trading volume and firm size: A test of the information spillover hypothesis," Review of Financial Economics, Elsevier, vol. 5(1), pages 47-58.
- Girardin, Eric & Joyeux, Roselyne, 2013.
"Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach,"
Economic Modelling, Elsevier, vol. 34(C), pages 59-68.
- Eric Girardin & Roselyne Joyeux, 2013. "Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach," Post-Print hal-01499615, HAL.
- Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
- Terry Boulter, 2000. "Asymmetric Information Arrival and the Short-Run Dynamics of Australian Dollar Volatility: a Mixture of Distributions Approach," School of Economics and Finance Discussion Papers and Working Papers Series 073, School of Economics and Finance, Queensland University of Technology.
- Terry Marsh & Takao Kobayashi, 2000.
"The Contributions of Professors Fischer Black, Robert Merton and Myron Scholes to the Financial Services Industry,"
International Review of Finance, International Review of Finance Ltd., vol. 1(4), pages 295-315, December.
- Terry Marsh & Takao Kobayashi, 2001. "The Contributions of Professors Fischer Black, Robert Merton, and Myron Scholes to the Financial Services Industry," CIRJE F-Series CIRJE-F-120, CIRJE, Faculty of Economics, University of Tokyo.
- Abhyankar, Abhay H., 1995. "Trading-round-the clock: Return, volatility and volume spillovers in the Eurodollar futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 3(1), pages 75-92, May.
- Claudio Borio, 2013.
"On Time, Stocks and Flows: Understanding the Global Macroeconomic Challenges,"
National Institute Economic Review, National Institute of Economic and Social Research, vol. 225(1), pages 3-13, August.
- Borio, Claudio, 2013. "On Time, Stocks and Flows: Understanding the Global Macroeconomic Challenges," National Institute Economic Review, National Institute of Economic and Social Research, vol. 225, pages 3-13, August.
- Galvão, Ana Beatriz, 2013.
"Changes in predictive ability with mixed frequency data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
- Ana Beatriz Galvão, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary University of London, School of Economics and Finance.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Economics Working Papers
ECO2013/02, European University Institute.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016.
"Do We Need High Frequency Data to Forecast Variances?,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
- Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
- Knotek, Edward S. & Zaman, Saeed, 2023.
"Real-time density nowcasts of US inflation: A model combination approach,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
- Edward Knotek & Saeed Zaman, 2020. "Real-time density nowcasts of US inflation: a model-combination approach," Working Papers 2015, University of Strathclyde Business School, Department of Economics.
- Edward S. Knotek & Saeed Zaman, 2020. "Real-Time Density Nowcasts of US Inflation: A Model-Combination Approach," Working Papers 20-31, Federal Reserve Bank of Cleveland.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Carlos Poza, 2021.
"Cycles and Long-Range Behaviour in the European Stock Markets,"
Dynamic Modeling and Econometrics in Economics and Finance, in: Gilles Dufrénot & Takashi Matsuki (ed.), Recent Econometric Techniques for Macroeconomic and Financial Data, pages 293-302,
Springer.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Carlos Poza, 2019. "Cycles and Long-Range Behaviour in the European Stock Market," CESifo Working Paper Series 7943, CESifo.
- Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
- J. Isaac Miller, 2014.
"Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures,"
Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
- J. Isaac Miller, 2012. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Working Papers 1211, Department of Economics, University of Missouri.
More about this item
Keywords
Seasonality; Forecasting; Time deformation; Time series;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:49:y:2015:i:1:p:363-387. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.