IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v17y2010i5p918-937.html
   My bibliography  Save this article

Retrieving risk neutral densities from European option prices based on the principle of maximum entropy

Author

Listed:
  • Rompolis, Leonidas S.

Abstract

This paper suggests a new method of implementing the principle of maximum entropy to retrieve the risk neutral density of future stock, or any other asset, returns from European call and put prices. The method maximizes the entropy measure subject to risk neutral moment constraints in place of option prices used by previous studies. These moments can be retrieved from market option prices at each point of time, in a first step. Compared to other existing methods of retrieving the risk neutral density based on the principle of maximum entropy, the benefits of the method that the paper suggests is the use of all the available information provided by the market more efficiently. To evaluate the performance of the suggested method, the paper compares it to other risk neutral density estimation techniques by conducting a simulation study and carrying out some crucial empirical exercises.

Suggested Citation

  • Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
  • Handle: RePEc:eee:empfin:v:17:y:2010:i:5:p:918-937
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927-5398(10)00035-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    2. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    3. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 143-159, March.
    4. Dilip B. Madan & Frank Milne, 1994. "Contingent Claims Valued And Hedged By Pricing And Investing In A Basis," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 223-245, July.
    5. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    6. Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.
    7. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-451.
    8. Fousseni Chabi-Yo & René Garcia & Eric Renault, 2008. "State Dependence Can Explain the Risk Aversion Puzzle," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 973-1011, April.
    9. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    10. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    12. Rockinger, Michael & Jondeau, Eric, 2002. "Entropy densities with an application to autoregressive conditional skewness and kurtosis," Journal of Econometrics, Elsevier, vol. 106(1), pages 119-142, January.
    13. Liu, Xiaoquan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2007. "Closed-form transformations from risk-neutral to real-world distributions," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1501-1520, May.
    14. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    15. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    16. Campa, Jose M. & Chang, P. H. Kevin & Reider, Robert L., 1998. "Implied exchange rate distributions: evidence from OTC option markets1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 117-160, February.
    17. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    18. Stutzer, Michael, 1996. "A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    19. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
    20. Ruijun Bu & Kaddour Hadri, 2007. "Estimating option implied risk-neutral densities using spline and hypergeometric functions," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 216-244, July.
    21. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    22. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    23. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    24. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    25. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    26. Giovanni Barone Adesi & Robert F. Engle & Loriano Mancini, 2014. "A GARCH Option Pricing Model with Filtered Historical Simulation," Palgrave Macmillan Books, in: Giovanni Barone Adesi (ed.), Simulating Security Returns: A Filtered Historical Simulation Approach, chapter 4, pages 66-108, Palgrave Macmillan.
    27. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    28. Abadir, Karim M. & Rockinger, Michael, 2003. "Density Functionals, With An Option-Pricing Application," Econometric Theory, Cambridge University Press, vol. 19(5), pages 778-811, October.
    29. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    30. Ximing Wu & Thanasis Stengos, 2005. "Partially adaptive estimation via the maximum entropy densities," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 352-366, December.
    31. Rompolis, Leonidas S. & Tzavalis, Elias, 2008. "Recovering Risk Neutral Densities from Option Prices: A New Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(4), pages 1037-1053, December.
    32. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    33. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    34. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    35. Kang, Byung Jin & Kim, Tong Suk, 2006. "Option-implied risk preferences: An extension to wider classes of utility functions," Journal of Financial Markets, Elsevier, vol. 9(2), pages 180-198, May.
    36. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    37. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    38. repec:bla:jfinan:v:59:y:2004:i:1:p:407-446 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omid M. Ardakani, 2022. "Option pricing with maximum entropy densities: The inclusion of higher‐order moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1821-1836, October.
    2. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Retrieving risk neutral moments and expected quadratic variation from option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 955-1002, May.
    3. Chalamandaris, Georgios & Rompolis, Leonidas S., 2012. "Exploring the role of the realized return distribution in the formation of the implied volatility smile," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1028-1044.
    4. Xixuan Han & Boyu Wei & Hailiang Yang, 2018. "Index Options And Volatility Derivatives In A Gaussian Random Field Risk-Neutral Density Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-41, June.
    5. Parnes, Dror, 2024. "Copper-to-gold ratio as a leading indicator for the 10-Year Treasury yield," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    6. Fabozzi, Frank J. & Leccadito, Arturo & Tunaru, Radu S., 2014. "Extracting market information from equity options with exponential Lévy processes," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 125-141.
    7. Cortés, Lina M. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Retrieving the implicit risk neutral density of WTI options with a semi-nonparametric approach," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    8. J. Arismendi-Zambrano & R. Azevedo, 2020. "Implicit Entropic Market Risk-Premium from Interest Rate Derivatives," Economics Department Working Paper Series n303-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    9. J. C. Arismendi & Marcel Prokopczuk, 2016. "A moment-based analytic approximation of the risk-neutral density of American options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(6), pages 409-444, November.
    10. Vladimir Zdorovenin & Jacques Pézier, 2011. "Does Information Content of Option Prices Add Value for Asset Allocation?," ICMA Centre Discussion Papers in Finance icma-dp2011-03, Henley Business School, University of Reading.
    11. Damir Filipović & Sander Willems, 2020. "A term structure model for dividends and interest rates," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1461-1496, October.
    12. Lina M. Cortés & Javier Perote & Andrés Mora-Valencia, 2017. "Implicit probability distribution for WTI options: The Black Scholes vs. the semi-nonparametric approach," Documentos de Trabajo de Valor Público 15923, Universidad EAFIT.
    13. Nessim Souissi, 2017. "The Implied Risk Neutral Density Dynamics: Evidence from the S&P TSX 60 Index," Journal of Applied Mathematics, Hindawi, vol. 2017, pages 1-10, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    3. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    4. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    5. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    6. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Retrieving risk neutral moments and expected quadratic variation from option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 955-1002, May.
    7. Marian Micu, 2005. "Extracting expectations from currency option prices: a comparison of methods," Computing in Economics and Finance 2005 226, Society for Computational Economics.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    10. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    11. Vladimir Zdorovenin & Jacques Pézier, 2011. "Does Information Content of Option Prices Add Value for Asset Allocation?," ICMA Centre Discussion Papers in Finance icma-dp2011-03, Henley Business School, University of Reading.
    12. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    13. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    14. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    15. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    16. Chalamandaris, Georgios & Rompolis, Leonidas S., 2012. "Exploring the role of the realized return distribution in the formation of the implied volatility smile," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1028-1044.
    17. Benzoni, Luca & Collin-Dufresne, Pierre & Goldstein, Robert S., 2011. "Explaining asset pricing puzzles associated with the 1987 market crash," Journal of Financial Economics, Elsevier, vol. 101(3), pages 552-573, September.
    18. Li, Yifan & Nolte, Ingmar & Pham, Manh Cuong, 2024. "Parametric risk-neutral density estimation via finite lognormal-Weibull mixtures," Journal of Econometrics, Elsevier, vol. 241(2).
    19. Wan-Ni Lai, 2014. "Comparison of methods to estimate option implied risk-neutral densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1839-1855, October.
    20. Ruijun Bu & Kaddour Hadri, 2005. "Estimating the Risk Neutral Probability Density Functions Natural Spline versus Hypergeometric Approach Using European Style Options," Working Papers 200510, University of Liverpool, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:17:y:2010:i:5:p:918-937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.