Copula-MIDAS-TRV model for risk spillover analysis − Evidence from the Chinese stock market
Author
Abstract
Suggested Citation
DOI: 10.1016/j.najef.2024.102230
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wu, Ping-Tsung & Shieh, Shwu-Jane, 2007. "Value-at-Risk analysis for long-term interest rate futures: Fat-tail and long memory in return innovations," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 248-259, March.
- Gkillas, Konstantinos & Katsiampa, Paraskevi, 2018. "An application of extreme value theory to cryptocurrencies," Economics Letters, Elsevier, vol. 164(C), pages 109-111.
- Nguyen, Hoang & Virbickaitė, Audronė, 2023.
"Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models,"
Energy Economics, Elsevier, vol. 124(C).
- Nguyen, Hoang & Virbickaite, Audrone, 2022. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Working Papers 2022:5, Örebro University, School of Business.
- Abuzayed, Bana & Bouri, Elie & Al-Fayoumi, Nedal & Jalkh, Naji, 2021. "Systemic risk spillover across global and country stock markets during the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 180-197.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Julia Kielmann & Hans Manner & Aleksey Min, 2021. "Stock Market Returns and Oil Price Shocks: A CoVaR Analysis based on Dynamic Vine Copula Models," Graz Economics Papers 2021-01, University of Graz, Department of Economics.
- Ji, Qiang & Liu, Bing-Yue & Fan, Ying, 2019. "Risk dependence of CoVaR and structural change between oil prices and exchange rates: A time-varying copula model," Energy Economics, Elsevier, vol. 77(C), pages 80-92.
- Yao, Can-Zhong & Li, Min-Jian, 2023. "GARCH-MIDAS-GAS-copula model for CoVaR and risk spillover in stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
- Lieven Baele, 2010.
"The Determinants of Stock and Bond Return Comovements,"
The Review of Financial Studies, Society for Financial Studies, vol. 23(6), pages 2374-2428, June.
- Lieven Baele & Geert Bekaert & Koen Inghelbrecht, 2007. "The determinants of stock and bond return comovements," Working Paper Research 119, National Bank of Belgium.
- Lieven Baele & Geert Bekaert & Koen Inghelbrecht, 2009. "The Determinants of Stock and Bond Return Comovements," NBER Working Papers 15260, National Bureau of Economic Research, Inc.
- Xu, Qifa & Jin, Bei & Jiang, Cuixia, 2021. "Measuring systemic risk of the Chinese banking industry: A wavelet-based quantile regression approach," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
- Kumar, Satish & Tiwari, Aviral Kumar & Raheem, Ibrahim Dolapo & Hille, Erik, 2021.
"Time-varying dependence structure between oil and agricultural commodity markets: A dependence-switching CoVaR copula approach,"
Resources Policy, Elsevier, vol. 72(C).
- Kumar, Satish & Tiwari, Aviral & Raheem, Ibrahim & Hille, Erik, 2021. "Time-varying dependence structure between oil and agricultural commodity markets: A dependence-switching CoVaR copula approach," MPRA Paper 106684, University Library of Munich, Germany.
- Han, Yingying & Gong, Pu & Zhou, Xiang, 2016. "Correlations and risk contagion between mixed assets and mixed-asset portfolio VaR measurements in a dynamic view: An application based on time varying copula models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 940-953.
- Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Jiang, Cuixia & Ding, Xiaoyi & Xu, Qifa & Tong, Yongbo, 2020. "A TVM-Copula-MIDAS-GARCH model with applications to VaR-based portfolio selection," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
- Gong, Yuting & Chen, Qiang & Liang, Jufang, 2018. "A mixed data sampling copula model for the return-liquidity dependence in stock index futures markets," Economic Modelling, Elsevier, vol. 68(C), pages 586-598.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nguyen, Hoang & Javed, Farrukh, 2023.
"Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach,"
Journal of Empirical Finance, Elsevier, vol. 73(C), pages 272-292.
- Nguyen, Hoang & Javed, Farrukh, 2021. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Working Papers 2021:15, Örebro University, School of Business.
- Nguyen, Hoang & Virbickaitė, Audronė, 2023.
"Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models,"
Energy Economics, Elsevier, vol. 124(C).
- Nguyen, Hoang & Virbickaite, Audrone, 2022. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Working Papers 2022:5, Örebro University, School of Business.
- Yao, Can-Zhong & Li, Min-Jian, 2023. "GARCH-MIDAS-GAS-copula model for CoVaR and risk spillover in stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
- Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
- Jiang, Cuixia & Li, Yuqian & Xu, Qifa & Liu, Yezheng, 2021. "Measuring risk spillovers from multiple developed stock markets to China: A vine-copula-GARCH-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 386-398.
- Dean Fantazzini & Stephan Zimin, 2020.
"A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies,"
Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
- Fantazzini, Dean & Zimin, Stephan, 2019. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," MPRA Paper 95988, University Library of Munich, Germany.
- Dai, Yun-Shi & Dai, Peng-Fei & Zhou, Wei-Xing, 2023.
"Tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
- Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2023. "Tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets," Papers 2303.11030, arXiv.org.
- Jiang, Cuixia & Ding, Xiaoyi & Xu, Qifa & Tong, Yongbo, 2020. "A TVM-Copula-MIDAS-GARCH model with applications to VaR-based portfolio selection," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Andrea BUCCI, 2017.
"Forecasting Realized Volatility A Review,"
Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
- Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
- Ghysels, Eric & Qian, Hang, 2019. "Estimating MIDAS regressions via OLS with polynomial parameter profiling," Econometrics and Statistics, Elsevier, vol. 9(C), pages 1-16.
- Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019.
"The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis,"
Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
- Sonali Das & Riza Demirer & Rangan Gupta & Siphumlile Mangisa, 2019. "The Effect of Global Crises on Stock Market Correlations: Evidence from Scalar Regressions via Functional Data Analysis," Working Papers 201908, University of Pretoria, Department of Economics.
- Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
- Duc Khuong Nguyen & Thomas Walther, 2020.
"Modeling and forecasting commodity market volatility with long‐term economic and financial variables,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
- Nguyen, Duc Khuong & Walther, Thomas, 2017. "Modeling and forecasting commodity market volatility with long-term economic and financial variables," MPRA Paper 84464, University Library of Munich, Germany, revised Jan 2018.
- Thomas Walther & Duc Khuong Nguyen, 2018. "Modeling and Forecasting Commodity Market Volatility with Long-term Economic and Financial Variables," Working Papers on Finance 1824, University of St. Gallen, School of Finance.
- Abdul Hakim & Michael McAleer, 2009.
"VaR Forecasts and Dynamic Conditional Correlations for Spot and Futures Returns on Stocks and Bonds,"
CIRJE F-Series
CIRJE-F-676, CIRJE, Faculty of Economics, University of Tokyo.
- Abdul Hakim & Michael McAleer, 2009. "VaR Forecasts and Dynamic Conditional Correlations for Spot and Futures Returns on Stocks and Bonds," CARF F-Series CARF-F-178, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Hakim, M.S. & McAleer, M.J., 2009. "VaR Forecast and Dynamic Conditional Correlations for Spot and Futures Returns on Stocks and Bonds," Econometric Institute Research Papers EI 2009-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Fang, Libing & Yu, Honghai & Li, Lei, 2017. "The effect of economic policy uncertainty on the long-term correlation between U.S. stock and bond markets," Economic Modelling, Elsevier, vol. 66(C), pages 139-145.
- Chen, Zhuoyi & Liu, Yuanyuan & Zhang, Hongwei, 2024. "Can geopolitical risks impact the long-run correlation between crude oil and clean energy markets? Evidence from a regime-switching analysis," Renewable Energy, Elsevier, vol. 229(C).
- Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
- Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.
- Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou, 2016.
"Macro-Finance Determinants of the Long-Run Stock–Bond Correlation: The DCC-MIDAS Specification,"
Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 617-642.
- Asgharian, Hossein & Christiansen, Charlotte & Hou, Ai Jun, 2014. "Macro-Finance Determinants of the Long-Run Stock-Bond Correlation: The DCC-MIDAS Specification," Working Papers 2014:37, Lund University, Department of Economics.
- Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou, 2014. "Macro-Finance Determinants of the Long-Run Stock-Bond Correlation: The DCC-MIDAS Specification," CREATES Research Papers 2014-13, Department of Economics and Business Economics, Aarhus University.
- Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
More about this item
Keywords
Risk spillover; Copula-MIDAS; GJR-GARCH; CoVaR; Leverage effect;All these keywords.
JEL classification:
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:74:y:2024:i:c:s1062940824001554. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.