IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1506.06568.html
   My bibliography  Save this paper

Nonparametric estimates of pricing functionals

Author

Listed:
  • Carlo Marinelli
  • Stefano d'Addona

Abstract

We analyze the empirical performance of several non-parametric estimators of the pricing functional for European options, using historical put and call prices on the S&P500 during the year 2012. Two main families of estimators are considered, obtained by estimating the pricing functional directly, and by estimating the (Black-Scholes) implied volatility surface, respectively. In each case simple estimators based on linear interpolation are constructed, as well as more sophisticated ones based on smoothing kernels, \`a la Nadaraya-Watson. The results based on the analysis of the empirical pricing errors in an extensive out-of-sample study indicate that a simple approach based on the Black-Scholes formula coupled with linear interpolation of the volatility surface outperforms, both in accuracy and computational speed, all other methods.

Suggested Citation

  • Carlo Marinelli & Stefano d'Addona, 2015. "Nonparametric estimates of pricing functionals," Papers 1506.06568, arXiv.org, revised Sep 2017.
  • Handle: RePEc:arx:papers:1506.06568
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1506.06568
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    3. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    4. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    5. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    6. Grith, Maria & Härdle, Wolfgang Karl & Schienle, Melanie, 2010. "Nonparametric estimation of risk-neutral densities," SFB 649 Discussion Papers 2010-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. Brendan K. Beare & Lawrence D. W. Schmidt, 2016. "An Empirical Test of Pricing Kernel Monotonicity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 338-356, March.
    8. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    9. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    10. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    11. repec:dau:papers:123456789/1392 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo Marinelli, 2024. "On certain representations of pricing functionals," Annals of Finance, Springer, vol. 20(1), pages 91-127, March.
    2. Carlo Marinelli & Stefano d’Addona, 2023. "Nonparametric estimates of option prices via Hermite basis functions," Annals of Finance, Springer, vol. 19(4), pages 477-522, December.
    3. Carlo Marinelli & Stefano d'Addona, 2022. "Nonparametric estimates of option prices via Hermite basis functions," Papers 2209.09656, arXiv.org, revised Aug 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    2. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    3. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    4. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    5. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    6. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    7. Fu, Qi & So, Jacky Yuk-Chow & Li, Xiaotong, 2024. "Stable paretian distribution, return generating processes and habit formation—The implication for equity premium puzzle," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    8. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    9. Kiesel, Rüdiger & Rahe, Florentin, 2017. "Option pricing under time-varying risk-aversion with applications to risk forecasting," Journal of Banking & Finance, Elsevier, vol. 76(C), pages 120-138.
    10. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    11. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    12. Chernov, Mikhail, 2003. "Empirical reverse engineering of the pricing kernel," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 329-364.
    13. Xinyu WU & Senchun REN & Hailin ZHOU, 2017. "Empirical Pricing Kernels: Evidence from the Hong Kong Stock Market," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(4), pages 263-278.
    14. Indranil Sengupta, 2016. "Generalized Bn–S Stochastic Volatility Model For Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-23, March.
    15. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    16. Peter Reinhard Hansen & Chen Tong, 2022. "Option Pricing with Time-Varying Volatility Risk Aversion," Papers 2204.06943, arXiv.org, revised Aug 2024.
    17. Song, Zhaogang & Xiu, Dacheng, 2016. "A tale of two option markets: Pricing kernels and volatility risk," Journal of Econometrics, Elsevier, vol. 190(1), pages 176-196.
    18. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2009. "Exploring Time-Varying Jump Intensities: Evidence from S&P500 Returns and Options," CIRANO Working Papers 2009s-34, CIRANO.
    19. Audrino, Francesco & Meier, Pirmin, 2012. "Empirical pricing kernel estimation using a functional gradient descent algorithm based on splines," Economics Working Paper Series 1210, University of St. Gallen, School of Economics and Political Science.
    20. Steven Heston & Kris Jacobs & Hyung Joo Kim, 2023. "The Pricing Kernel in Options," Finance and Economics Discussion Series 2023-053, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1506.06568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.