Granger causality testing in mixed-frequency Vars with possibly (co)integrated processes
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Thomas B. Götz & Alain W. Hecq, 2019. "Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
References listed on IDEAS
- Toda, Hiro Y & Phillips, Peter C B, 1993.
"Vector Autoregressions and Causality,"
Econometrica, Econometric Society, vol. 61(6), pages 1367-1393, November.
- Hiro Y. Toda & Peter C.B. Phillips, 1991. "Vector Autoregression and Causality," Cowles Foundation Discussion Papers 977, Cowles Foundation for Research in Economics, Yale University.
- Andrea Silvestrini & David Veredas, 2008.
"Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey,"
Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
- Andrea Silvestrini & David Veredas, 2008. "Temporal aggregation of univariate and multivariate time series models: A survey," Temi di discussione (Economic working papers) 685, Bank of Italy, Economic Research and International Relations Area.
- Andrea Silvestrini & David Veredas, 2008. "Temporal aggregation of univariate and multivariate time series models: a survey," ULB Institutional Repository 2013/136205, ULB -- Universite Libre de Bruxelles.
- SILVESTRINI, Andrea & VEREDAS, David, 2009. "Temporal aggregation of univariate and multivariate time series models: A survey," LIDAM Reprints CORE 2013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Zadrozny, Peter A., 2016.
"Extended Yule–Walker identification of VARMA models with single- or mixed-frequency data,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 438-446.
- Peter A. Zadrozny, 2015. "Extended Yule-Walker Identification of Varma Models with Single- or Mixed- Frequency Data," Economic Working Papers 485, Bureau of Labor Statistics.
- Zadrozny, Peter A., 2015. "Extended Yule-Walker identification of Varma models with single- or mixed frequency data," CFS Working Paper Series 526, Center for Financial Studies (CFS).
- Peter A. Zadrozny, 2016. "Extended Yule-Walker Identification of Varma Models with Single- or Mixed-Frequency Data," CESifo Working Paper Series 5884, CESifo.
- Thomas B. Götz & Alain Hecq & Jean‐Pierre Urbain, 2014.
"Forecasting Mixed‐Frequency Time Series with ECM‐MIDAS Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 198-213, April.
- Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012. "Forecasting Mixed Frequency Time Series with ECM-MIDAS Models," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- J. Isaac Miller, 2014.
"Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures,"
Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
- J. Isaac Miller, 2012. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Working Papers 1211, Department of Economics, University of Missouri.
- Götz, Thomas B. & Hecq, Alain, 2014.
"Nowcasting causality in mixed frequency vector autoregressive models,"
Economics Letters, Elsevier, vol. 122(1), pages 74-78.
- Götz, T.B. & Hecq, A.W., 2013. "Nowcasting causality in mixed frequency vector autoregressive models," Research Memorandum 050, Maastricht University, Graduate School of Business and Economics (GSBE).
- Jacopo Cimadomo & Antonello D'Agostino, 2016.
"Combining Time Variation and Mixed Frequencies: an Analysis of Government Spending Multipliers in Italy,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1276-1290, November.
- D'Agostino, Antonello & Cimadomo, Jacopo, 2015. "Combining time-variation and mixed-frequencies: an analysis of government spending multipliers in Italy," Working Paper Series 1856, European Central Bank.
- Antonello D’Agostino & Jacopo Cimadomo, 2015. "Combining time-variation and mixed-frequencies: an analysis of government spending multipliers in Italy," Working Papers 7, European Stability Mechanism.
- Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016.
"Testing for Granger causality with mixed frequency data,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
- Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2013. "Testing for Granger Causality with Mixed Frequency Data," CEPR Discussion Papers 9655, C.E.P.R. Discussion Papers.
- Phillips, P C B, 1987.
"Time Series Regression with a Unit Root,"
Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
- Phillips, P.C.B., 1986. "Testing for a Unit Root in Time Series Regression," Cahiers de recherche 8633, Universite de Montreal, Departement de sciences economiques.
- Peter C.B. Phillips & Pierre Perron, 1986. "Testing for a Unit Root in Time Series Regression," Cowles Foundation Discussion Papers 795R, Cowles Foundation for Research in Economics, Yale University, revised Sep 1987.
- Tom Doan, "undated". "PPUNIT: RATS procedure to perform Phillips-Perron Unit Root test," Statistical Software Components RTS00160, Boston College Department of Economics.
- J. Isaac Miller, 2016.
"Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
- J. Isaac Miller, 2011. "Conditionally Efficient Estimation of Long-run Relationships Using Mixed-frequency Time Series," Working Papers 1103, Department of Economics, University of Missouri, revised 30 May 2012.
- Lutkepohl, Helmut & Reimers, Hans-Eggert, 1992. "Granger-causality in cointegrated VAR processes The case of the term structure," Economics Letters, Elsevier, vol. 40(3), pages 263-268, November.
- Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016.
"Testing for Granger causality in large mixed-frequency VARs,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
- Götz, T.B. & Hecq, A.W., 2014. "Testing for Granger causality in large mixed-frequency VARs," Research Memorandum 028, Maastricht University, Graduate School of Business and Economics (GSBE).
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
- Götz, T.B. & Hecq, A.W. & Smeekes, S., 2015. "Testing for Granger Causality in Large Mixed-Frequency VARs," Research Memorandum 036, Maastricht University, Graduate School of Business and Economics (GSBE).
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Eric Ghysels & J. Isaac Miller, 2015.
"Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
- Ghysels, Eric & Miller, J. Isaac, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," CEPR Discussion Papers 9654, C.E.P.R. Discussion Papers.
- Eric Ghysels & J. Isaac Miller, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," Working Papers 1307, Department of Economics, University of Missouri, revised 07 May 2014.
- Engle, Robert & Granger, Clive, 2015.
"Co-integration and error correction: Representation, estimation, and testing,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
- Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-276, March.
- Thomas B. Götz & Alain Hecq & Jean-Pierre Urbain, 2013.
"Testing for Common Cycles in Non-Stationary VARs with Varied Frequency Data,"
Advances in Econometrics, in: VAR Models in Macroeconomics – New Developments and Applications: Essays in Honor of Christopher A. Sims, volume 32, pages 361-393,
Emerald Group Publishing Limited.
- Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2013. "Testing for common cycles in non-stationary VARs with varied frecquency data," Research Memorandum 002, Maastricht University, Graduate School of Business and Economics (GSBE).
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Boriss Siliverstovs, 2017.
"Short-term forecasting with mixed-frequency data: a MIDASSO approach,"
Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
- Boriss Siliverstovs, 2015. "Short-term forecasting with mixed-frequency data: A MIDASSO approach," KOF Working papers 15-375, KOF Swiss Economic Institute, ETH Zurich.
- Frank Schorfheide & Dongho Song, 2015.
"Real-Time Forecasting With a Mixed-Frequency VAR,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
- Frank Schorfheide & Dongho Song, 2012. "Real-time forecasting with a mixed-frequency VAR," Working Papers 701, Federal Reserve Bank of Minneapolis.
- Frank Schorfheide & Dongho Song, 2013. "Real-Time Forecasting with a Mixed-Frequency VAR," NBER Working Papers 19712, National Bureau of Economic Research, Inc.
- Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
- Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
- Bjørn Eraker & Ching Wai (Jeremy) Chiu & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2015.
"Bayesian Mixed Frequency VARs,"
Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 698-721.
- Ching Wai Chiu & Bjorn Eraker & Andrew T. Foerster & Tae Bong Kim & Hernan D. Seoane, 2011. "Estimating VAR's sampled at mixed or irregular spaced frequencies : a Bayesian approach," Research Working Paper RWP 11-11, Federal Reserve Bank of Kansas City.
- Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
- Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
- MacKinnon, James G & Haug, Alfred A & Michelis, Leo, 1999.
"Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 563-577, Sept.-Oct.
- Mackinnon, J.G. & Haug, A.A. & Michelis, L., 1996. "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration," G.R.E.Q.A.M. 96a09, Universite Aix-Marseille III.
- James G. MacKinnon & Alfred A. Haug & Leo Michelis, 1996. "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration," Working Papers 1996_07, York University, Department of Economics.
- Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
- Götz, Thomas B. & Hauzenberger, Klemens, 2018. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," Discussion Papers 40/2018, Deutsche Bundesbank.
- Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
- Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015.
"Markov-switching mixed-frequency VAR models,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
- Marcellino, Massimiliano & Foroni, Claudia, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.
- Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
- Phillips, P C B, 1987.
"Time Series Regression with a Unit Root,"
Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
- Peter C.B. Phillips, 1985. "Time Series Regression with a Unit Root," Cowles Foundation Discussion Papers 740R, Cowles Foundation for Research in Economics, Yale University, revised Feb 1986.
- Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
- Blasques, F. & Koopman, S.J. & Mallee, M. & Zhang, Z., 2016. "Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 405-417.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Le, Chau & Dickinson, David & Le, Anh, 2022. "Sovereign risk spillovers: A network approach," Journal of Financial Stability, Elsevier, vol. 60(C).
- Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023.
"Lasso inference for high-dimensional time series,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
- Robert Adamek & Stephan Smeekes & Ines Wilms, 2020. "Lasso Inference for High-Dimensional Time Series," Papers 2007.10952, arXiv.org, revised Sep 2022.
- Tom Dudda & Tony Klein & Duc Khuong Nguyen & Thomas Walther, 2022.
"Common Drivers of Commodity Futures?,"
Working Papers
2207, Utrecht School of Economics.
- Dudda, Tom L. & Klein, Tony & Nguyen, Duc Khuong & Walther, Thomas, 2022. "Common Drivers of Commodity Futures?," QBS Working Paper Series 2022/05, Queen's University Belfast, Queen's Business School.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016.
"Testing for Granger causality in large mixed-frequency VARs,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
- Götz, T.B. & Hecq, A.W., 2014. "Testing for Granger causality in large mixed-frequency VARs," Research Memorandum 028, Maastricht University, Graduate School of Business and Economics (GSBE).
- Götz, T.B. & Hecq, A.W. & Smeekes, S., 2015. "Testing for Granger Causality in Large Mixed-Frequency VARs," Research Memorandum 036, Maastricht University, Graduate School of Business and Economics (GSBE).
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
- Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016.
"Testing for Granger causality with mixed frequency data,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
- Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2013. "Testing for Granger Causality with Mixed Frequency Data," CEPR Discussion Papers 9655, C.E.P.R. Discussion Papers.
- Michal Franta & David Havrlant & Marek Rusnák, 2016.
"Forecasting Czech GDP Using Mixed-Frequency Data Models,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.
- Michal Franta & David Havrlant & Marek Rusnak, 2014. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Working Papers 2014/08, Czech National Bank.
- Bacchiocchi, Emanuele & Bastianin, Andrea & Missale, Alessandro & Rossi, Eduardo, 2020. "Structural analysis with mixed-frequency data: A model of US capital flows," Economic Modelling, Elsevier, vol. 89(C), pages 427-443.
- Götz, Thomas B. & Hauzenberger, Klemens, 2018. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," Discussion Papers 40/2018, Deutsche Bundesbank.
- Judith Giles & Cara Williams, 2001.
"Export-led growth: a survey of the empirical literature and some non-causality results. Part 2,"
The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 9(4), pages 445-470.
- Judith A. Giles & Cara L. Williams, 2000. "Export-Led Growth: A Survey of the Empirical Literature and Some Noncausality Results, Part 1," Econometrics Working Papers 0001, Department of Economics, University of Victoria.
- Judith A. Giles & Cara L. Williams, 2000. "Export-Led Growth: A Survey of the Empirical Literature and Some Noncausality Results, Part 2," Econometrics Working Papers 0002, Department of Economics, University of Victoria.
- Ankargren, Sebastian & Jonéus, Paulina, 2021.
"Simulation smoothing for nowcasting with large mixed-frequency VARs,"
Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
- Sebastian Ankargren & Paulina Jon'eus, 2019. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Papers 1907.01075, arXiv.org.
- Judith Giles & Cara Williams, 2001.
"Export-led growth: a survey of the empirical literature and some non-causality results. Part 1,"
The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 9(3), pages 261-337.
- Judith A. Giles & Cara L. Williams, 2000. "Export-Led Growth: A Survey of the Empirical Literature and Some Noncausality Results, Part 1," Econometrics Working Papers 0001, Department of Economics, University of Victoria.
- Judith A. Giles & Cara L. Williams, 2000. "Export-Led Growth: A Survey of the Empirical Literature and Some Noncausality Results, Part 2," Econometrics Working Papers 0002, Department of Economics, University of Victoria.
- Judith A. Clarke & Sadaf Mirza, 2003. "Some Finite Sample Results On Testing For Granger Noncausality," Econometrics Working Papers 0305, Department of Economics, University of Victoria.
- Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012.
"Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data),"
Research Memorandum
021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
- Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Working Paper
2013/06, Norges Bank.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
- Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
- Miller, J. Isaac, 2018.
"Simple robust tests for the specification of high-frequency predictors of a low-frequency series,"
Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
- J. Isaac Miller, 2014. "Simple Robust Tests for the Specification of High-Frequency Predictors of a Low-Frequency Series," Working Papers 1412, Department of Economics, University of Missouri.
- Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2018.
"Using low frequency information for predicting high frequency variables,"
International Journal of Forecasting, Elsevier, vol. 34(4), pages 774-787.
- Claudia Foroni & Pierre Guérin & Massimiliano Marcellino, 2015. "Using low frequency information for predicting high frequency variables," Working Paper 2015/13, Norges Bank.
- Lütkepohl, Helmut, 1999. "Vector autoregressions," SFB 373 Discussion Papers 1999,4, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020.
"A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior,"
Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
- Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
- Sebastian Ankargren & M{aa}ns Unosson & Yukai Yang, 2019. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Papers 1911.09151, arXiv.org.
- Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024.
"Reservoir computing for macroeconomic forecasting with mixed-frequency data,"
International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
- Giovanni Ballarin & Petros Dellaportas & Lyudmila Grigoryeva & Marcel Hirt & Sophie van Huellen & Juan-Pablo Ortega, 2022. "Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data," Papers 2211.00363, arXiv.org, revised Jan 2024.
- Alain Hecq & Marie Ternes & Ines Wilms, 2021. "Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions," Papers 2102.11780, arXiv.org, revised Mar 2022.
- Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, November.
More about this item
Keywords
Mixed frequencies; Granger causality; Hypothesis testing; Vector autoregressions; Cointegration;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2018-08-13 (Econometrics)
- NEP-ETS-2018-08-13 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:87746. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.