IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i5d10.1007_s00362-023-01520-2.html
   My bibliography  Save this article

Improved Breitung and Roling estimator for mixed-frequency models with application to forecasting inflation rates

Author

Listed:
  • Talha Omer

    (Jönköping University)

  • Kristofer Månsson

    (Jönköping University)

  • Pär Sjölander

    (Jönköping University)

  • B. M. Golam Kibria

    (Florida International University)

Abstract

Instead of applying the commonly used parametric Almon or Beta lag distribution of MIDAS, Breitung and Roling (J Forecast 34:588–603, 2015) suggested a nonparametric smoothed least-squares shrinkage estimator (henceforth $${SLS}_{1}$$ SLS 1 ) for estimating mixed-frequency models. This $${SLS}_{1}$$ SLS 1 approach ensures a flexible smooth trending lag distribution. However, even if the biasing parameter in $${SLS}_{1}$$ SLS 1 solves the overparameterization problem, the cost is a decreased goodness-of-fit. Therefore, we suggest a modification of this shrinkage regression into a two-parameter smoothed least-squares estimator ( $${SLS}_{2}$$ SLS 2 ). This estimator solves the overparameterization problem, and it has superior properties since it ensures that the orthogonality assumption between residuals and the predicted dependent variable holds, which leads to an increased goodness-of-fit. Our theoretical comparisons, supported by simulations, demonstrate that the increase in goodness-of-fit of the proposed two-parameter estimator also leads to a decrease in the mean square error of $${SLS}_{2},$$ SLS 2 , compared to that of $${SLS}_{1}$$ SLS 1 . Empirical results, where the inflation rate is forecasted based on the oil returns, demonstrate that our proposed $${SLS}_{2}$$ SLS 2 estimator for mixed-frequency models provides better estimates in terms of decreased MSE and improved R2, which in turn leads to better forecasts.

Suggested Citation

  • Talha Omer & Kristofer Månsson & Pär Sjölander & B. M. Golam Kibria, 2024. "Improved Breitung and Roling estimator for mixed-frequency models with application to forecasting inflation rates," Statistical Papers, Springer, vol. 65(5), pages 3303-3325, July.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:5:d:10.1007_s00362-023-01520-2
    DOI: 10.1007/s00362-023-01520-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01520-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01520-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Selma Toker, 2020. "Investigating the two parameter analysis of Lipovetsky for simultaneous systems," Statistical Papers, Springer, vol. 61(5), pages 2059-2089, October.
    2. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
    3. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
    4. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
    5. Modugno, Michele, 2013. "Now-casting inflation using high frequency data," International Journal of Forecasting, Elsevier, vol. 29(4), pages 664-675.
    6. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    7. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    8. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
    9. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    10. JÖrg Breitung & Christoph Roling, 2015. "Forecasting Inflation Rates Using Daily Data: A Nonparametric MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(7), pages 588-603, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    2. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    3. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    4. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    5. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    6. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    7. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    8. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    9. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    10. Nava, Consuelo R. & Osti, Linda & Zoia, Maria Grazia, 2022. "Forecasting Domestic Tourism across Regional Destinations through MIDAS Regressions," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202207, University of Turin.
    11. Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
    12. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.
    13. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    14. Knotek, Edward S. & Zaman, Saeed, 2019. "Financial nowcasts and their usefulness in macroeconomic forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1708-1724.
    15. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    16. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    17. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    18. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    19. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
    20. Ryan T. Ball & Eric Ghysels, 2018. "Automated Earnings Forecasts: Beat Analysts or Combine and Conquer?," Management Science, INFORMS, vol. 64(10), pages 4936-4952, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:5:d:10.1007_s00362-023-01520-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.