Forecasting volatility of wind power production
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Shen, Zhiwei & Ritter, Matthias, 2016. "Forecasting volatility of wind power production," Applied Energy, Elsevier, vol. 176(C), pages 295-308.
References listed on IDEAS
- Bollerslev, Tim & Ghysels, Eric, 1996.
"Periodic Autoregressive Conditional Heteroscedasticity,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
- Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Universite de Montreal, Departement de sciences economiques.
- Luc Bauwens & Arie Preminger & Jeroen V. K. Rombouts, 2010.
"Theory and inference for a Markov switching GARCH model,"
Econometrics Journal, Royal Economic Society, vol. 13(2), pages 218-244, July.
- Luc, BAUWENS & Arie, PREMINGER & Jeroen, ROMBOUTS, 2007. "Theory and inference for a Markov switching GARCH model," Discussion Papers (ECON - Département des Sciences Economiques) 2007033, Université catholique de Louvain, Département des Sciences Economiques.
- BAUWENS, Luc & PREMINGER, Arie & ROMBOUTS, Jeroen VK, 2010. "Theory and inference for a Markov switching Garch model," LIDAM Reprints CORE 2303, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2007. "Theory and Inference for a Markov-Switching GARCH Model," Cahiers de recherche 0733, CIRPEE.
- BAUWENS, Luc & PREMINGER, Arie & ROMBOUTS, Jeroen V.K., 2007. "Theory and inference for a Markov switching GARCH model," LIDAM Discussion Papers CORE 2007055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2007. "Theory and inference for a Markov switching Garch model," Cahiers de recherche 07-09, HEC Montréal, Institut d'économie appliquée.
- Balcilar, Mehmet & Gupta, Rangan & Miller, Stephen M., 2015.
"Regime switching model of US crude oil and stock market prices: 1859 to 2013,"
Energy Economics, Elsevier, vol. 49(C), pages 317-327.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2014. "Regime Switching Model of US Crude Oil and Stock Market Prices: 1859 to 2013," Working papers 2014-26, University of Connecticut, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2014. "Regime Switching Model of US Crude Oil and Stock Market Prices: 1859 to 2013," Working Papers 201429, University of Pretoria, Department of Economics.
- Martin T. Bohl & Jeanne Diesteldorf & Christian A. Salm & Bernd Wilfling, 2016.
"Spot Market Volatility and Futures Trading: The Pitfalls of Using a Dummy Variable Approach,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(1), pages 30-45, January.
- Martin T. Bohl & Jeanne Diesteldorf & Christian A. Salm & Bernd Wilfling, 2014. "Spot Market Volatility and Futures Trading: The Pitfalls of Using a Dummy Variable Approach," CQE Working Papers 3514, Center for Quantitative Economics (CQE), University of Muenster.
- Jan Henneke & Svetlozar Rachev & Frank Fabozzi & Metodi Nikolov, 2011. "MCMC-based estimation of Markov Switching ARMA-GARCH models," Applied Economics, Taylor & Francis Journals, vol. 43(3), pages 259-271.
- Lammerding, Marc & Stephan, Patrick & Trede, Mark & Wilfling, Bernd, 2013.
"Speculative bubbles in recent oil price dynamics: Evidence from a Bayesian Markov-switching state-space approach,"
Energy Economics, Elsevier, vol. 36(C), pages 491-502.
- Marc Lammerding & Patrick Stephan & Mark Trede & Bernd Wilfling, 2012. "Speculative bubbles in recent oil price dynamics: Evidence from a Bayesian Markov-switching state-space approach," CQE Working Papers 2312, Center for Quantitative Economics (CQE), University of Muenster.
- Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
- Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
- Song, Zhe & Jiang, Yu & Zhang, Zijun, 2014. "Short-term wind speed forecasting with Markov-switching model," Applied Energy, Elsevier, vol. 130(C), pages 103-112.
- Zhang, Wenyu & Wu, Jie & Wang, Jianzhou & Zhao, Weigang & Shen, Lin, 2012. "Performance analysis of four modified approaches for wind speed forecasting," Applied Energy, Elsevier, vol. 99(C), pages 324-333.
- Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Engle, Robert F & Ng, Victor K, 1993.
"Measuring and Testing the Impact of News on Volatility,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
- Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
- P. Pinson, 2012. "Very-short-term probabilistic forecasting of wind power with generalized logit–normal distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(4), pages 555-576, August.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Georgios Anastasiades & Patrick McSharry, 2013. "Quantile Forecasting of Wind Power Using Variability Indices," Energies, MDPI, vol. 6(2), pages 1-34, February.
- Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
- Pierre-Julien Trombe & Pierre Pinson & Henrik Madsen, 2012. "A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations," Energies, MDPI, vol. 5(3), pages 1-37, March.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Liu, Heping & Erdem, Ergin & Shi, Jing, 2011. "Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed," Applied Energy, Elsevier, vol. 88(3), pages 724-732, March.
- Jurate Saltyte Benth & Fred Espen Benth, 2010. "Analysis and modelling of wind speed in New York," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 893-909.
- Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
- Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2014. "Designing an index for assessing wind energy potential," SFB 649 Discussion Papers 2014-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
- Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015.
"Designing an index for assessing wind energy potential,"
Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
- Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2014. "Designing an index for assessing wind energy potential," SFB 649 Discussion Papers 2014-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
- Alessandrini, S. & Sperati, S. & Pinson, P., 2013. "A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data," Applied Energy, Elsevier, vol. 107(C), pages 271-280.
- Bilgili, Mehmet & Sahin, Besir & Yasar, Abdulkadir, 2007. "Application of artificial neural networks for the wind speed prediction of target station using reference stations data," Renewable Energy, Elsevier, vol. 32(14), pages 2350-2360.
- A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Erick López & Carlos Valle & Héctor Allende & Esteban Gil & Henrik Madsen, 2018. "Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory," Energies, MDPI, vol. 11(3), pages 1-22, February.
- Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
- Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
- Akbal, Yıldırım & Ünlü, Kamil Demirberk, 2022. "A univariate time series methodology based on sequence-to-sequence learning for short to midterm wind power production," Renewable Energy, Elsevier, vol. 200(C), pages 832-844.
- Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
- Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
- Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
- Hugo T. V. Gouveia & Murilo A. Souza & Aida A. Ferreira & Jonata C. de Albuquerque & Otoni Nóbrega Neto & Milde Maria da Silva Lira & Ronaldo R. B. de Aquino, 2023. "Application of Augmented Echo State Networks and Genetic Algorithm to Improve Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(6), pages 1-15, March.
- Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
- Sherzod N. Tashpulatov, 2021. "The Impact of Regulatory Reforms on Demand Weighted Average Prices," Mathematics, MDPI, vol. 9(10), pages 1-15, May.
- Lucheroni, Carlo & Boland, John & Ragno, Costantino, 2019. "Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models," Applied Energy, Elsevier, vol. 239(C), pages 1226-1241.
- Fu, Yang & Zheng, Zeyu, 2020. "Volatility modeling and the asymmetric effect for China’s carbon trading pilot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
- Gong, Xu & Wen, Fenghua & Xia, X.H. & Huang, Jianbai & Pan, Bin, 2017. "Investigating the risk-return trade-off for crude oil futures using high-frequency data," Applied Energy, Elsevier, vol. 196(C), pages 152-161.
- Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2020. "Spatial and temporal correlation analysis of wind power between different provinces in China," Energy, Elsevier, vol. 191(C).
- Liu, Liuchen & Zhu, Tong & Pan, Yu & Wang, Hai, 2017. "Multiple energy complementation based on distributed energy systems – Case study of Chongming county, China," Applied Energy, Elsevier, vol. 192(C), pages 329-336.
- Ahmed, Adil & Khalid, Muhammad, 2018. "An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks," Applied Energy, Elsevier, vol. 225(C), pages 902-911.
- Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
- Sherzod N. Tashpulatov, 2021. "Modeling and Estimating Volatility of Day-Ahead Electricity Prices," Mathematics, MDPI, vol. 9(7), pages 1-11, March.
- Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.
- Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:hum:wpaper:sfb649dp2015-026 is not listed on IDEAS
- Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
- Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
- Abounoori, Esmaiel & Elmi, Zahra (Mila) & Nademi, Younes, 2016. "Forecasting Tehran stock exchange volatility; Markov switching GARCH approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 264-282.
- Donggyu Kim & Minseok Shin, 2023. "Volatility models for stylized facts of high‐frequency financial data," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 262-279, May.
- Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
- Szabolcs Blazsek & Anna Downarowicz, 2013. "Forecasting hedge fund volatility: a Markov regime-switching approach," The European Journal of Finance, Taylor & Francis Journals, vol. 19(4), pages 243-275, April.
- Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
- Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
- Xekalaki, Evdokia & Degiannakis, Stavros, 2005.
"Evaluating volatility forecasts in option pricing in the context of a simulated options market,"
Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
- Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating Volatility Forecasts in Option Pricing in the Context of a Simulated Options Market," MPRA Paper 80468, University Library of Munich, Germany.
- Thomas Chuffart, 2015.
"Selection Criteria in Regime Switching Conditional Volatility Models,"
Econometrics, MDPI, vol. 3(2), pages 1-28, May.
- Thomas Chuffart, 2013. "Selection Criteria in Regime Switching Conditional Volatility Models," Working Papers halshs-00844413, HAL.
- Thomas Chuffart, 2015. "Selection Criteria in Regime Switching Conditional Volatility Models," Post-Print hal-01457388, HAL.
- Thomas Chuffart, 2013. "Selection Criteria in Regime Switching Conditional Volatility Models," AMSE Working Papers 1339, Aix-Marseille School of Economics, France, revised 14 Jul 2013.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Gerrit Reher & Bernd Wilfling, 2016. "A nesting framework for Markov-switching GARCH modelling with an application to the German stock market," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 411-426, March.
- Bergsli, Lykke Øverland & Lind, Andrea Falk & Molnár, Peter & Polasik, Michał, 2022. "Forecasting volatility of Bitcoin," Research in International Business and Finance, Elsevier, vol. 59(C).
- Naeem, Muhammad & Tiwari, Aviral Kumar & Mubashra, Sana & Shahbaz, Muhammad, 2019. "Modeling volatility of precious metals markets by using regime-switching GARCH models," Resources Policy, Elsevier, vol. 64(C).
- Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
- N. Alemohammad & S. Rezakhah & S. H. Alizadeh, 2020. "Markov switching asymmetric GARCH model: stability and forecasting," Statistical Papers, Springer, vol. 61(3), pages 1309-1333, June.
- Ardia, David & Hoogerheide, Lennart F., 2010.
"Efficient Bayesian estimation and combination of GARCH-type models,"
MPRA Paper
22919, University Library of Munich, Germany.
- David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
- Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
- Zhao, Yixiu & Upreti, Vineet & Cai, Yuzhi, 2021. "Stock returns, quantile autocorrelation, and volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 73(C).
More about this item
Keywords
wind energy; volatility forecasting; GARCH models; Markov regime-switching; realized volatility;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2015-05-22 (Energy Economics)
- NEP-FOR-2015-05-22 (Forecasting)
- NEP-RMG-2015-05-22 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2015-026. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.