IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/98s-02.html
   My bibliography  Save this paper

Risk Aversion, Intertemporal Substitution, and Option Pricing

Author

Listed:
  • René Garcia
  • Eric Renault

Abstract

This paper develops a general stochastic framework and an equilibrium asset pricing model that make clear how attitudes towards intertemporal substitution and risk matter for option pricing. In particular, we show under which statistical conditions option pricing formulas are not preference-free, in other words when preferences are not hidden in the stock and bond prices as they are in the standard Black and Scholes (BS) or Hull and White (HW) pricing formulas. The dependence of option prices on preference parameters comes from several instantaneous causality effects such as the so-called leverage effect. We also emphasize that the most standard asset pricing models (CAPM for the stock and BS or HW preference-free option pricing) are valid under the same stochastic setting (typically the absence of leverage effect), regardless of preference parameter values. Even though we propose a general non preference-free option pricing formula, we always keep in mind that the BS formula is dominant both as a theoretical reference model and as a tool for practitioners. Another contribution of the paper is to characterize why the BS formula is such a benchmark. We show that, as soon as we are ready to accept a basic property of option prices, namely their homogeneity of degree one with respect to the pair formed by the underlying stock price and the strike price, the necessary statistical hypotheses for homogeneity provide BS-shaped option prices in equilibrium. This BS-shaped option pricing formula allows us to derive interesting characterizations of the volatility smile, that is the pattern of BS implicit volatilities as a function of the option moneyness. First, the asymmetry of the smile is shown to be equivalent to a particular form of asymmetry of the equivalent martingale measure. Second, this asymmetry appears precisely when there is either a premium on an instantaneous interest rate risk or on a generalized leverage effect or both, in other words whenever the option pricing formula is not preference-free. Therefore, the0501n conclusion of our analysis for practitioners should be that an asymmetric smile is indicative of the relevance of preference parameters to price options. Dans le présent article, on propose un cadre stochastique général et un modèle d'évaluation d'actifs financiers à l'équilibre qui mettent en évidence les rôles respectifs de l'élasticité de substitution intertemporelle et de l'aversion pour le risque dans le prix de marché des options. Nous précisons en particulier les conditions statistiques sous lesquelles les formules d'évaluation d'options dépendent ou non explicitement des paramètres de préférence, en particulier quand ces paramètres ne sont pas cachés dans les prix de l'actif sous-jacent et d'une obligation, comme c'est le cas dans les modèles standards de Black et Scholes (BS) ou de Hull et White (HW). Plusieurs effets de causalité instantanée, du type effet de levier, expliquent l'occurrence non redondante des paramètres de préférence dans les prix d'options. On prouve aussi que les modèles d'évaluation d'actifs financiers les plus classiques (CAPM pour les actions, BS ou HW où les prix d'options ne font pas apparaître les paramètres de préférence) sont fondés sur les mêmes hypothèses stochastiques (typiquement l'absence d'effet de levier), indépendamment des valeurs des paramètres de préférence. Même si notre formule générale d'évaluation d'options dépend dans certains cas explicitement des paramètres de préférence, on n'oublie pas que la formule BS est dominante à la fois comme modèle théorique de référence et comme instrument de gestion. Une autre contribution de l'article est la validation théorique de ce rôle de référence. Ainsi, dans la mesure où on accepte une propriété essentielle des prix d'options, à savoir leur homogénéité de degré un par rapport au couple formé par le prix de l'actif sous-jacent et le prix d'exercice, on peut montrer que les hypothèses statistiques nécessaires et suffisantes pour l'homogénéité donnent à l'équilibre des prix d'options qui conservent l'essentiel de la forme fonctionnelle de BS. Cette forme fonctionnelle nous permet de mettre en évidence certaines propriétés importantes du sourire de volatilité, c'est-à-dire de la représentation graphique des volatilités implicites de BS en fonction de la position de l'option par rapport à la monnaie. On montre d'abord que l'asymétrie de ce sourire est équivalente à une forme particulière d'asymétrie de la mesure de martingale équivalente. Enfin, cette asymétrie correspond précisément au cas où il existe soit une prime sur un risque instantané de taux d'intérêt, soit un effet de levier généralisé, soit les deux, en d'autres termes lorsque la formule d'évaluation d'options dépend explicitement des paramètres de préférence. En conclusion, le message principal pour la gestion d'options résultant de notre analyse est que l'évidence d'une asymétrie dans le sourire de volatilité signale l'importance de la prise en compte des paramètres de préférence dans les formules d'évaluation d'options.

Suggested Citation

  • René Garcia & Eric Renault, 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," CIRANO Working Papers 98s-02, CIRANO.
  • Handle: RePEc:cir:cirwor:98s-02
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/98s-02.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yacine Aït-Sahalia & Andrew W. Lo, "undated". "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," CRSP working papers 332, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    2. Cecchetti, Stephen G. & Lam, Pok-sang & Mark, Nelson C., 1993. "The equity premium and the risk-free rate : Matching the moments," Journal of Monetary Economics, Elsevier, vol. 31(1), pages 21-45, February.
    3. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589833, January.
    4. Marco Antonio Bonomo & Rene Garcia, 1993. "Disappointment aversion as a solution to the equity premium and the risk-free rate puzzles," Textos para discussão 308, Department of Economics PUC-Rio (Brazil).
    5. Epstein, Larry G & Zin, Stanley E, 1991. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: An Empirical Analysis," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 263-286, April.
    6. Bergman, Yaacov Z & Grundy, Bruce D & Wiener, Zvi, 1996. "General Properties of Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1573-1610, December.
    7. Hansen, Lars Peter & Singleton, Kenneth J, 1983. "Stochastic Consumption, Risk Aversion, and the Temporal Behavior of Asset Returns," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 249-265, April.
    8. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    9. Bonomo, Marco & Garcia, Rene, 1996. "Consumption and equilibrium asset pricing: An empirical assessment," Journal of Empirical Finance, Elsevier, vol. 3(3), pages 239-265, September.
    10. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    11. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    12. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    13. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1981. "A Re-examination of Traditional Hypotheses about the Term Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 36(4), pages 769-799, September.
    14. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1996. "Implied Volatility Functions: Empirical Tests," Working Papers hal-00606071, HAL.
    15. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    16. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, January.
    17. René Garcia & Èric Renault, 1998. "A Note on Hedging in ARCH and Stochastic Volatility Option Pricing Models," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 153-161, April.
    18. Cecchetti, Stephen G & Lam, Pok-sang & Mark, Nelson C, 1990. "Mean Reversion in Equilibrium Asset Prices," American Economic Review, American Economic Association, vol. 80(3), pages 398-418, June.
    19. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589819, January.
    20. Engle, Robert F. & Mustafa, Chowdhury, 1992. "Implied ARCH models from options prices," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 289-311.
    21. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    22. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    23. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    24. Machina, Mark J, 1989. "Dynamic Consistency and Non-expected Utility Models of Choice under Uncertainty," Journal of Economic Literature, American Economic Association, vol. 27(4), pages 1622-1668, December.
    25. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    26. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
    27. Amin, Kaushik I & Ng, Victor K, 1993. "Option Valuation with Systematic Stochastic Volatility," Journal of Finance, American Finance Association, vol. 48(3), pages 881-910, July.
    28. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    29. Florens, J P & Mouchart, M, 1982. "A Note on Noncausality," Econometrica, Econometric Society, vol. 50(3), pages 583-591, May.
    30. Brennan, M J, 1979. "The Pricing of Contingent Claims in Discrete Time Models," Journal of Finance, American Finance Association, vol. 34(1), pages 53-68, March.
    31. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    32. Jorion, Philippe, 1995. "Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
    33. Selden, Larry, 1978. "A New Representation of Preferences over "Certain A Uncertain" Consumption Pairs: The "Ordinal Certainty Equivalent" Hypothesis," Econometrica, Econometric Society, vol. 46(5), pages 1045-1060, September.
    34. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    35. Turnbull, Stuart M & Milne, Frank, 1991. "A Simple Approach to Interest-Rate Option Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 4(1), pages 87-120.
    36. Bossaerts, P.L.M. & Hillion, P., 1995. "Local Parametric Analysis of Hedging in Discrete Time," Other publications TiSEM 77cdfe27-8732-4f09-bf89-f, Tilburg University, School of Economics and Management.
    37. Naik, Vasanttilak & Lee, Moon, 1990. "General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 493-521.
    38. Aït-Sahalia, Yacine. & Bickel, Peter J. & Stoker, Thomas M., 1994. "Goodness-of-fit tests for regression using kernel methods," Working papers 3747-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    39. Eric Renault & Nizar Touzi, 1996. "Option Hedging And Implied Volatilities In A Stochastic Volatility Model1," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 279-302, July.
    40. Bailey, Warren & Stulz, René M., 1989. "The Pricing of Stock Index Options in a General Equilibrium Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(1), pages 1-12, March.
    41. Florens, Jean-Pierre & Fougere, Denis, 1996. "Noncausality in Continuous Time," Econometrica, Econometric Society, vol. 64(5), pages 1195-1212, September.
    42. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    43. Bossaerts, P.L.M. & Hillion, P., 1995. "Local Parametric Analysis of Hedging in Discrete Time," Discussion Paper 1995-23, Tilburg University, Center for Economic Research.
    44. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    45. Christopher A. Sims, 1980. "Martingale-Like Behavior of Prices," NBER Working Papers 0489, National Bureau of Economic Research, Inc.
    46. repec:crs:wpaper:9329 is not listed on IDEAS
    47. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589826, January.
    48. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    49. Kreps, David M & Porteus, Evan L, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Econometrica, Econometric Society, vol. 46(1), pages 185-200, January.
    50. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    51. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    52. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, January.
    53. Kaushik I. Amin & Robert A. Jarrow, 1992. "Pricing Options On Risky Assets In A Stochastic Interest Rate Economy1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 217-237, October.
    54. Yaacov Z. Bergman & Bruce D. Grundy & Zvi Wiener, "undated". "General Properties of Option Prices (Revision of 11-95) (Reprint 058)," Rodney L. White Center for Financial Research Working Papers 1-96, Wharton School Rodney L. White Center for Financial Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    2. Garcia, Rene & Luger, Richard & Renault, Eric, 2003. "Empirical assessment of an intertemporal option pricing model with latent variables," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 49-83.
    3. Stanislav Khrapov, 2012. "Risk Premia: Short and Long-term," Working Papers w0169, New Economic School (NES).
    4. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 407-458, Fall.
    5. Eric Ghysels & Valentin Patilea & Eric Renault & Olivier Torrès, 1997. "Nonparametric Methods and Option Pricing," CIRANO Working Papers 97s-19, CIRANO.
    6. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    7. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
    8. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
    9. Robert R. Bliss & Nikolaos Panigirtzoglou, 2001. "Recovering risk aversion from options," Working Paper Series WP-01-15, Federal Reserve Bank of Chicago.
    10. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    11. Jacquier, Eric & Jarrow, Robert, 2000. "Bayesian analysis of contingent claim model error," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 145-180.
    12. René Garcia & Richard Luger & Eric Renault, 2001. "Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : Nouvelle version Février 2002)," CIRANO Working Papers 2001s-02, CIRANO.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    2. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    3. René Garcia & Richard Luger & Éric Renault, 2005. "Viewpoint: Option prices, preferences, and state variables," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(1), pages 1-27, February.
    4. Garcia, Rene & Luger, Richard & Renault, Eric, 2003. "Empirical assessment of an intertemporal option pricing model with latent variables," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 49-83.
    5. René Garcia & Richard Luger & Eric Renault, 2001. "Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : Nouvelle version Février 2002)," CIRANO Working Papers 2001s-02, CIRANO.
    6. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. René Garcia & Eric Renault, 1999. "Latent Variable Models for Stochastic Discount Factors," CIRANO Working Papers 99s-47, CIRANO.
    9. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    10. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    11. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    12. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    13. Gurdip S. Bakshi & Zhiwu Chen, "undated". "An Alternative Model for Contingent Claims," Research in Financial Economics 9504, Ohio State University.
    14. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    15. Peter Christoffersen & Kris Jacobs, 2002. "Which Volatility Model for Option Valuation?," CIRANO Working Papers 2002s-33, CIRANO.
    16. Mikhail Chernov & Eric Ghysels, 1998. "What Data Should Be Used to Price Options?," CIRANO Working Papers 98s-22, CIRANO.
    17. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    18. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    19. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    20. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.

    More about this item

    Keywords

    Causality; hidden Markov chains; non-separable utility; equilibrium option pricing; recursive utility; Black-Scholes implicit volatility; smile effect; Causalité; chaînes de Markov cachées; utilité non séparable; évaluation d.options par modèle d'équilibre; utilité récursive; volatilité implicite de Black-Scholes; sourire de volatilité;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:98s-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.