The information content of uncertainty indices for natural gas futures volatility forecasting
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2769
Download full text from publisher
References listed on IDEAS
- Dario Caldara & Matteo Iacoviello, 2022.
"Measuring Geopolitical Risk,"
American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
- Matteo Iacoviello, 2018. "Measuring Geopolitical Risk," 2018 Meeting Papers 79, Society for Economic Dynamics.
- Dario Caldara & Matteo Iacoviello, 2018. "Measuring Geopolitical Risk," International Finance Discussion Papers 1222r1, Board of Governors of the Federal Reserve System (U.S.), revised 23 Mar 2022.
- Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
- Geng, Jiang-Bo & Xu, Xiao-Yue & Ji, Qiang, 2020. "The time-frequency impacts of natural gas prices on US economic activity," Energy, Elsevier, vol. 205(C).
- Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
- Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Herbert, John H, 1995. "Trading volume, maturity and natural gas futures price volatility," Energy Economics, Elsevier, vol. 17(4), pages 293-299, October.
- Hiroaki Suenaga & Aaron Smith & Jeffrey Williams, 2008. "Volatility dynamics of NYMEX natural gas futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(5), pages 438-463, May.
- Libing Fang & Baizhu Chen & Honghai Yu & Yichuo Qian, 2018. "The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 413-422, March.
- Francesco Audrino & Yujia Hu, 2016.
"Volatility Forecasting: Downside Risk, Jumps and Leverage Effect,"
Econometrics, MDPI, vol. 4(1), pages 1-24, February.
- Audrino, Francesco & Hu, Yujia, 2011. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Economics Working Paper Series 1138, University of St. Gallen, School of Economics and Political Science.
- Husted, Lucas & Rogers, John & Sun, Bo, 2020.
"Monetary policy uncertainty,"
Journal of Monetary Economics, Elsevier, vol. 115(C), pages 20-36.
- Lucas F. Husted & John H. Rogers & Bo Sun, 2017. "Monetary Policy Uncertainty," International Finance Discussion Papers 1215, Board of Governors of the Federal Reserve System (U.S.).
- Mei, Dexiang & Zeng, Qing & Cao, Xiang & Diao, Xiaohua, 2019. "Uncertainty and oil volatility: New evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 155-163.
- Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
- Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
- Zhang, Dayong & Wang, Tiantian & Shi, Xunpeng & Liu, Jia, 2018. "Is hub-based pricing a better choice than oil indexation for natural gas? Evidence from a multiple bubble test," Energy Economics, Elsevier, vol. 76(C), pages 495-503.
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
- Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, January.
- Choudhry, Taufiq & Papadimitriou, Fotios I. & Shabi, Sarosh, 2016. "Stock market volatility and business cycle: Evidence from linear and nonlinear causality tests," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 89-101.
- Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2018. "Forecasting the prices of crude oil using the predictor, economic and combined constraints," Economic Modelling, Elsevier, vol. 75(C), pages 237-245.
- Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Yan‐ran Ma & Qiang Ji & Jiaofeng Pan, 2019. "Oil financialization and volatility forecast: Evidence from multidimensional predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 564-581, September.
- Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Yaojie Zhang & Feng Ma & Tianyi Wang & Li Liu, 2019. "Out‐of‐sample volatility prediction: A new mixed‐frequency approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(7), pages 669-680, November.
- Liang, Chao & Ma, Feng & Li, Ziyang & Li, Yan, 2020. "Which types of commodity price information are more useful for predicting US stock market volatility?," Economic Modelling, Elsevier, vol. 93(C), pages 642-650.
- Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
- Chao Liang & Yu Wei & Xiafei Li & Xuhui Zhang & Yifeng Zhang, 2020. "Uncertainty and crude oil market volatility: new evidence," Applied Economics, Taylor & Francis Journals, vol. 52(27), pages 2945-2959, May.
- Lin, Boqiang & Wesseh, Presley K., 2013. "What causes price volatility and regime shifts in the natural gas market," Energy, Elsevier, vol. 55(C), pages 553-563.
- Fenghua Wen & Yupei Zhao & Minzhi Zhang & Chunyan Hu, 2019. "Forecasting realized volatility of crude oil futures with equity market uncertainty," Applied Economics, Taylor & Francis Journals, vol. 51(59), pages 6411-6427, December.
- Aloui, Riadh & Gupta, Rangan & Miller, Stephen M., 2016.
"Uncertainty and crude oil returns,"
Energy Economics, Elsevier, vol. 55(C), pages 92-100.
- Riadh Aloui & Rangan Gupta & Stephen M. Miller, 2015. "Uncertainty and Crude Oil Returns," Working Papers 201503, University of Pretoria, Department of Economics.
- Riadh Aloui & Rangan Gupta & Stephen M. Miller, 2015. "Uncertainty and crude oil returns," Working papers 2015-03, University of Connecticut, Department of Economics.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- repec:eee:finlet:v:24:y:2018:i:c:p:56-63 is not listed on IDEAS
- Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
- Mu, Xiaoyi, 2007. "Weather, storage, and natural gas price dynamics: Fundamentals and volatility," Energy Economics, Elsevier, vol. 29(1), pages 46-63, January.
- Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
- Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
- Prokopczuk, Marcel & Stancu, Andrei & Symeonidis, Lazaros, 2019. "The economic drivers of commodity market volatility," Journal of International Money and Finance, Elsevier, vol. 98(C), pages 1-1.
- Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
- Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
- Hailemariam, Abebe & Smyth, Russell, 2019. "What drives volatility in natural gas prices?," Energy Economics, Elsevier, vol. 80(C), pages 731-742.
- Ergen, Ibrahim & Rizvanoghlu, Islam, 2016. "Asymmetric impacts of fundamentals on the natural gas futures volatility: An augmented GARCH approach," Energy Economics, Elsevier, vol. 56(C), pages 64-74.
- Zhang, Dayong & Shi, Min & Shi, Xunpeng, 2018. "Oil indexation, market fundamentals, and natural gas prices: An investigation of the Asian premium in natural gas trade," Energy Economics, Elsevier, vol. 69(C), pages 33-41.
- Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
- Chen, Zhonglu & Liang, Chao & Umar, Muhammad, 2021. "Is investor sentiment stronger than VIX and uncertainty indices in predicting energy volatility?," Resources Policy, Elsevier, vol. 74(C).
- Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
- Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
- Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
- Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).
- Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Guo, Xiaozhu & Huang, Dengshi & Li, Xiafei & Liang, Chao, 2023. "Are categorical EPU indices predictable for carbon futures volatility? Evidence from the machine learning method," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 672-693.
- Yan, Xiang & Bai, Jiancheng & Li, Xiafei & Chen, Zhonglu, 2022. "Can dimensional reduction technology make better use of the information of uncertainty indices when predicting volatility of Chinese crude oil futures?," Resources Policy, Elsevier, vol. 75(C).
- Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
- Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
- Liang, Chao & Luo, Qin & Li, Yan & Huynh, Luu Duc Toan, 2023. "Global financial stress index and long-term volatility forecast for international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
- Chao Liang & Yan Li & Feng Ma & Yaojie Zhang, 2022. "Forecasting international equity market volatility: A new approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1433-1457, November.
- Liu, Jing & Ma, Feng & Tang, Yingkai & Zhang, Yaojie, 2019. "Geopolitical risk and oil volatility: A new insight," Energy Economics, Elsevier, vol. 84(C).
- Yu Wei & Lan Bai & Kun Yang & Guiwu Wei, 2021. "Are industry‐level indicators more helpful to forecast industrial stock volatility? Evidence from Chinese manufacturing purchasing managers index," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 17-39, January.
- Li, Xiafei & Guo, Qiang & Liang, Chao & Umar, Muhammad, 2023. "Forecasting gold volatility with geopolitical risk indices," Research in International Business and Finance, Elsevier, vol. 64(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:40:y:2021:i:7:p:1310-1324. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.