IDEAS home Printed from https://ideas.repec.org/p/umc/wpaper/1103.html
   My bibliography  Save this paper

Conditionally Efficient Estimation of Long-run Relationships Using Mixed-frequency Time Series

Author

Abstract

I analyze efficient estimation of a cointegrating vector when the regressand is observed at a lower frequency than the regressors. Previous authors have examined the effects of specific temporal aggregation or sampling schemes, finding conventionally efficient techniques to be efficient only when both the regressand and the regressors are average sampled. Using an alternative method for analyzing aggregation under more general weighting schemes, I derive an efficiency bound that is conditional on the type of aggregation used on the regressand and differs from the unconditional bound defined by the infeasible full-information high-frequency data-generating process. I modify a conventional estimator, canonical cointegrating regression (CCR), to accommodate cases in which the aggregation weights are either unknown or known. In the unknown case, the correlation structure of the error term generally confounds identification of the conditionally efficient weights. In the known case, the correlation structure may be utilized to offset the potential information loss from aggregation, resulting in a conditionally efficient estimator. Efficiency is illustrated using a simulation study and an application to estimating a gasoline demand equation.

Suggested Citation

  • J. Isaac Miller, 2011. "Conditionally Efficient Estimation of Long-run Relationships Using Mixed-frequency Time Series," Working Papers 1103, Department of Economics, University of Missouri, revised 30 May 2012.
  • Handle: RePEc:umc:wpaper:1103
    as

    Download full text from publisher

    File URL: https://drive.google.com/file/d/1O8yX7UZxUGN7xrWBvtacR4vvpna6ZPcg/view?usp=sharing
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Park, Joon Y, 1992. "Canonical Cointegrating Regressions," Econometrica, Econometric Society, vol. 60(1), pages 119-143, January.
    2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    3. Ghysels, Eric & Granger, Clive W J & Siklos, Pierre L, 1996. "Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process?," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 374-386, July.
    4. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    5. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    6. Marcus J. Chambers, 2011. "Cointegration and sampling frequency," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 156-185, July.
    7. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    8. Granger, C. W. J. & Siklos, Pierre L., 1995. "Systematic sampling, temporal aggregation, seasonal adjustment, and cointegration theory and evidence," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 357-369.
    9. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    10. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    11. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    12. Ghysels, Eric & Granger, Clive W J & Siklos, Pierre L, 1996. "Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process? Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 396-397, July.
    13. Kurozumi, Eiji & Hayakawa, Kazuhiko, 2009. "Asymptotic properties of the efficient estimators for cointegrating regression models with serially dependent errors," Journal of Econometrics, Elsevier, vol. 149(2), pages 118-135, April.
    14. Alfred A. Haug, 2002. "Temporal Aggregation and the Power of Cointegration Tests: a Monte Carlo Study," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(4), pages 399-412, September.
    15. Thomas B. Götz & Alain Hecq & Jean-Pierre Urbain, 2013. "Testing for Common Cycles in Non-Stationary VARs with Varied Frequency Data," Advances in Econometrics, in: VAR Models in Macroeconomics – New Developments and Applications: Essays in Honor of Christopher A. Sims, volume 32, pages 361-393, Emerald Group Publishing Limited.
    16. Rajaguru, Gulasekaran & Abeysinghe, Tilak, 2008. "Temporal aggregation, cointegration and causality inference," Economics Letters, Elsevier, vol. 101(3), pages 223-226, December.
    17. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    18. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    19. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    20. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    21. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    22. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    23. Chambers, Marcus J. & Roderick McCrorie, J., 2007. "Frequency domain estimation of temporally aggregated Gaussian cointegrated systems," Journal of Econometrics, Elsevier, vol. 136(1), pages 1-29, January.
    24. Silk, Julian I. & Joutz, Frederick L., 1997. "Short and long-run elasticities in US residential electricity demand: a co-integration approach," Energy Economics, Elsevier, vol. 19(4), pages 493-513, October.
    25. Montalvo, Jose G., 1995. "Comparing cointegrating regression estimators: Some additional Monte Carlo results," Economics Letters, Elsevier, vol. 48(3-4), pages 229-234, June.
    26. Dahl, Carol & Sterner, Thomas, 1991. "Analysing gasoline demand elasticities: a survey," Energy Economics, Elsevier, vol. 13(3), pages 203-210, July.
    27. Saikkonen, Pentti, 1991. "Asymptotically Efficient Estimation of Cointegration Regressions," Econometric Theory, Cambridge University Press, vol. 7(1), pages 1-21, March.
    28. Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-136, January.
    29. Richard Schmalensee & Thomas M. Stoker, 1999. "Household Gasoline Demand in the United States," Econometrica, Econometric Society, vol. 67(3), pages 645-662, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals with Google Trends and Mixed Frequency Data," EconStor Preprints 187420, ZBW - Leibniz Information Centre for Economics.
    2. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    3. Chambers, Marcus J., 2020. "Frequency domain estimation of cointegrating vectors with mixed frequency and mixed sample data," Journal of Econometrics, Elsevier, vol. 217(1), pages 140-160.
    4. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
    5. Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012. "Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data)," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    6. Thomas B. Götz & Alain Hecq & Jean‐Pierre Urbain, 2014. "Forecasting Mixed‐Frequency Time Series with ECM‐MIDAS Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 198-213, April.
    7. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    8. Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122, Emerald Group Publishing Limited.
    9. Miller, J. Isaac, 2018. "Simple robust tests for the specification of high-frequency predictors of a low-frequency series," Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
    10. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    11. Thomas B. Götz & Alain W. Hecq, 2019. "Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
    12. Cui, Xiaomeng & Gafarov, Bulat & Ghanem, Dalia & Kuffner, Todd, 2024. "On model selection criteria for climate change impact studies," Journal of Econometrics, Elsevier, vol. 239(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    2. Gabriel Pons Rotger, 2000. "Temporal Aggregation and Ordinary Least Squares Estimation of Cointegrating Regressions," Econometric Society World Congress 2000 Contributed Papers 1317, Econometric Society.
    3. Mamingi Nlandu, 2017. "Beauty and Ugliness of Aggregation over Time: A Survey," Review of Economics, De Gruyter, vol. 68(3), pages 205-227, December.
    4. Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122, Emerald Group Publishing Limited.
    5. J. Isaac Miller & Xi Wang, 2016. "Implementing Residual-Based KPSS Tests for Cointegration with Data Subject to Temporal Aggregation and Mixed Sampling Frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 810-824, November.
    6. Kim, In-Moo & Park, Joon Y., 2005. "Iterative Maximum Likelihood Estimation of Cointegrating Vectors," Working Papers 2005-02, Rice University, Department of Economics.
    7. Jeyhun I. Mikayilov & Shahriyar Mukhtarov & Hasan Dinçer & Serhat Yüksel & Rıdvan Aydın, 2020. "Elasticity Analysis of Fossil Energy Sources for Sustainable Economies: A Case of Gasoline Consumption in Turkey," Energies, MDPI, vol. 13(3), pages 1-15, February.
    8. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016. "Testing for Granger causality with mixed frequency data," Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
    9. Aparicio, Felipe M. & Escribano, Álvaro & Mármol, Francesc, 1999. "A new instrumental variable approach for estimation and testing in fractional cointegrating regressions," DES - Working Papers. Statistics and Econometrics. WS 6298, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Fakhri J. Hasanov & Lester C. Hunt & Ceyhun I. Mikayilov, 2016. "Modeling and Forecasting Electricity Demand in Azerbaijan Using Cointegration Techniques," Energies, MDPI, vol. 9(12), pages 1-31, December.
    11. Kuo, Biing-Shen, 1998. "Test for partial parameter instability in regressions with I(1) processes," Journal of Econometrics, Elsevier, vol. 86(2), pages 337-368, June.
    12. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    13. Miller, J. Isaac, 2018. "Simple robust tests for the specification of high-frequency predictors of a low-frequency series," Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
    14. Minxian, Yang, 1998. "System estimators of cointegrating matrix in absence of normalising information," Journal of Econometrics, Elsevier, vol. 85(2), pages 317-337, August.
    15. Kurozumi, Eiji & Hayakawa, Kazuhiko, 2009. "Asymptotic properties of the efficient estimators for cointegrating regression models with serially dependent errors," Journal of Econometrics, Elsevier, vol. 149(2), pages 118-135, April.
    16. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    17. Hassler, Uwe, 2002. "The Effects of linear time trends on conintegration testing in single equations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 18294, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Hasanov, Fakhri J. & Shannak, Sa'd, 2020. "Electricity incentives for agriculture in Saudi Arabia. Is that relevant to remove them?," Energy Policy, Elsevier, vol. 144(C).
    19. Emrah Sofuoğlu & Oktay Kızılkaya & Emrah Koçak, 2022. "Assessing the Impact of High-Technology Exports on the Growth of the Turkish Economy," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 9(1), pages 205-229, January.
    20. Panopoulou, Ekaterini & Pantelidis, Theologos, 2016. "The Fisher effect in the presence of time-varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 495-511.

    More about this item

    Keywords

    cointegration; canonical cointegrating regression; temporal aggregation; mixed-frequency series; mixed data sampling; price elasticity of gasoline demand;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:umc:wpaper:1103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chao Gu (email available below). General contact details of provider: https://edirc.repec.org/data/edumous.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.