IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v134y2024ics0140988324003141.html
   My bibliography  Save this article

Forecasting oil futures returns with news

Author

Listed:
  • Pan, Zhiyuan
  • Zhong, Hao
  • Wang, Yudong
  • Huang, Juan

Abstract

This paper aims to explore the extent to which text data contains valuable information for predicting oil futures returns. A novel mixed-frequency data sampling random forest regression (MIDAS-RF) approach is proposed to construct a textual indicator. This approach can extract nonlinearity and interaction information from news and allows us to better handle the mixed-frequency and high-dimensional data. Comparing it with traditional sentiment variables and financial factors, our indicator demonstrates better forecasting performance both statistically and economically, with a monthly out-of-sample R2 of 5.26% and an annualized certainty equivalent return gain of 3.08%, respectively. Further evidence suggests that the predictability of the textual indicator is primarily driven by words related to capital markets and macroeconomic topics.

Suggested Citation

  • Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324003141
    DOI: 10.1016/j.eneco.2024.107606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324003141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Oil futures; Return predictability; Machine learning; Mixed-frequency data sampling; Textual analysis;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324003141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.