IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v31y2013i1p45-56.html
   My bibliography  Save this article

Markov-Switching MIDAS Models

Author

Listed:
  • Pierre Guérin
  • Massimiliano Marcellino

Abstract

This article introduces a new regression model—Markov-switching mixed data sampling (MS-MIDAS)—that incorporates regime changes in the parameters of the mixed data sampling (MIDAS) models and allows for the use of mixed-frequency data in Markov-switching models. After a discussion of estimation and inference for MS-MIDAS and a small sample simulation-based evaluation, the MS-MIDAS model is applied to the prediction of the U.S. economic activity, in terms of both quantitative forecasts of the aggregate economic activity and the prediction of the business cycle regimes. Both simulation and empirical results indicate that MS-MIDAS is a very useful specification.

Suggested Citation

  • Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
  • Handle: RePEc:taf:jnlbes:v:31:y:2013:i:1:p:45-56
    DOI: 10.1080/07350015.2012.727721
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2012.727721
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2012.727721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    2. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    3. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    4. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
    5. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
    6. Galbraith, John W. & Tkacz, Greg, 2000. "Testing for asymmetry in the link between the yield spread and output in the G-7 countries," Journal of International Money and Finance, Elsevier, vol. 19(5), pages 657-672, October.
    7. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    8. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    9. Chevillon, Guillaume & Hendry, David F., 2005. "Non-parametric direct multi-step estimation for forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 21(2), pages 201-218.
    10. Marine Carrasco & Liang Hu, 2004. "Optimal test for Markov switching," Econometric Society 2004 North American Summer Meetings 396, Econometric Society.
    11. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    12. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    13. Guillaume Chevillon, 2007. "Direct Multi‐Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
    14. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    15. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    16. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    17. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    18. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    19. Zacharias Psaradakis & Nicola Spagnolo, 2006. "Joint Determination of the State Dimension and Autoregressive Order for Models with Markov Regime Switching," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(5), pages 753-766, September.
    20. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    21. Hamilton, James D., 2011. "Calling recessions in real time," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
    22. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
    23. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    24. Ana Beatriz C. Galvao, 2006. "Structural break threshold VARs for predicting US recessions using the spread," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 463-487.
    25. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    26. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
    27. Driffill John & Kenc Turalay & Sola Martin & Spagnolo Fabio, 2009. "The Effects of Different Parameterizations of Markov-Switching in a CIR Model of Bond Pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
    28. Kim, Chang-Jin & Piger, Jeremy & Startz, Richard, 2008. "Estimation of Markov regime-switching regression models with endogenous switching," Journal of Econometrics, Elsevier, vol. 143(2), pages 263-273, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    2. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
    3. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    4. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    5. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
    6. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    7. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    8. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    9. Barsoum, Fady & Stankiewicz, Sandra, 2015. "Forecasting GDP growth using mixed-frequency models with switching regimes," International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
    10. Chudik, Alexander & Grossman, Valerie & Pesaran, M. Hashem, 2016. "A multi-country approach to forecasting output growth using PMIs," Journal of Econometrics, Elsevier, vol. 192(2), pages 349-365.
    11. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.
    12. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    13. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    14. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017. "Density Forecasts With Midas Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
    15. Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
    16. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    17. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    18. Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
    19. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    20. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:31:y:2013:i:1:p:45-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.