IDEAS home Printed from https://ideas.repec.org/p/cui/wpaper/0035.html
   My bibliography  Save this paper

Forecasting GDP with energy series: ADL-MIDAS vs. Linear Time Series Models

Author

Listed:
  • Afees A. Salisu

    (Centre for Econometric and Allied Research, University of Ibadan)

  • Ahamuefula Ephraim Ogbonna

    (Centre for Econometric and Allied Research, University of Ibadan)

Abstract

In this paper, we offer the following contributions to the extant literature on the energy-growth nexus. First, we test the predictability of energy series in the predictive growth model using autoregressive distributed lag mixed data sample (ADL-MIDAS) approach. Second, we compare the in-sample and out-of-sample forecast performance of the ADL-MIDAS model with the linear time series models involving the first order autoregressive [AR(1)] model and the autoregressive distributed lag (ARDL) model. Third, we consider an array of energy proxies ranging from aggregate data to sectoral data of energy consumption (residential, commercial, industrial and transportation) and those defined by energy sources (petroleum, natural gas, coal, electricity, nuclear electricity and renewable energy). Fourth, we test whether accounting for asymmetries matters in the ADL-MIDAS regression model for the energy-growth nexus. The results support the significant predictability of energy for growth regardless of the measures of energy. In addition, the in-sample and out-of-sample forecast results overwhelmingly favour the ADL-MIDAS over the conventional linear time series models including the restrictive AR model. Thus, allowing for high frequency data for energy in the low frequency growth model will enhance the forecast accuracy of the model. However, we find that accounting for asymmetries may not improve the forecast accuracy of the ADL-MIDAS model in the energy-growth nexus since forecasts of the positive and negative asymmetric models do not differ significantly.

Suggested Citation

  • Afees A. Salisu & Ahamuefula Ephraim Ogbonna, 2017. "Forecasting GDP with energy series: ADL-MIDAS vs. Linear Time Series Models," Working Papers 035, Centre for Econometric and Allied Research, University of Ibadan.
  • Handle: RePEc:cui:wpaper:0035
    as

    Download full text from publisher

    File URL: http://cear.org.ng/index.php?option=com_docman&task=doc_download&gid=74&Itemid=29
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ahmed, Mumtaz & Azam, Muhammad, 2016. "Causal nexus between energy consumption and economic growth for high, middle and low income countries using frequency domain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 653-678.
    2. Hoang, Thi Hong Van & Lahiani, Amine & Heller, David, 2016. "Is gold a hedge against inflation? New evidence from a nonlinear ARDL approach," Economic Modelling, Elsevier, vol. 54(C), pages 54-66.
    3. Imad Moosa, 2013. "Why is it so difficult to outperform the random walk in exchange rate forecasting?," Applied Economics, Taylor & Francis Journals, vol. 45(23), pages 3340-3346, August.
    4. James H. Stock & Mark W. Watson, 2008. "Phillips curve inflation forecasts," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
    5. Smales, L.A., 2017. "Commodity market volatility in the presence of U.S. and Chinese macroeconomic news," Journal of Commodity Markets, Elsevier, vol. 7(C), pages 15-27.
    6. Narayan, Seema & Doytch, Nadia, 2017. "An investigation of renewable and non-renewable energy consumption and economic growth nexus using industrial and residential energy consumption," Energy Economics, Elsevier, vol. 68(C), pages 160-176.
    7. James Davidson & Andreea Halunga & Tim Lloyd & Steve McCorriston & Wyn Morgan, 2016. "World Commodity Prices and Domestic Retail Food Price Inflation: Some Insights from the UK," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 566-583, September.
    8. Alsalman, Zeina, 2016. "Oil price uncertainty and the U.S. stock market analysis based on a GARCH-in-mean VAR model," Energy Economics, Elsevier, vol. 59(C), pages 251-260.
    9. Pardey, Philip G. & Andrade, Robert S. & Hurley, Terrance M. & Rao, Xudong & Liebenberg, Frikkie G., 2016. "Returns to food and agricultural R&D investments in Sub-Saharan Africa, 1975–2014," Food Policy, Elsevier, vol. 65(C), pages 1-8.
    10. Gelos, Gaston & Ustyugova, Yulia, 2017. "Inflation responses to commodity price shocks – How and why do countries differ?," Journal of International Money and Finance, Elsevier, vol. 72(C), pages 28-47.
    11. Benkraiem, Ramzi & Lahiani, Amine & Miloudi, Anthony & Shahbaz, Muhammad, 2018. "New insights into the US stock market reactions to energy price shocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 169-187.
    12. Muhammad Shahbaz & Smile Dube & Ilhan Ozturk & Abdul Jalil, 2015. "Testing the Environmental Kuznets Curve Hypothesis in Portugal," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 475-481.
    13. Chen, Yu-chin & Turnovsky, Stephen J. & Zivot, Eric, 2014. "Forecasting inflation using commodity price aggregates," Journal of Econometrics, Elsevier, vol. 183(1), pages 117-134.
    14. Abdulkadir Abdulrashid Rafindadi, 2015. "Econometric Prediction on the Effects of Financial Development and Trade Openness on the German Energy Consumption: A Startling Revelation," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 182-196.
    15. Belke, Ansgar & Dobnik, Frauke & Dreger, Christian, 2011. "Energy consumption and economic growth: New insights into the cointegration relationship," Energy Economics, Elsevier, vol. 33(5), pages 782-789, September.
    16. Robert B. Barsky & Lutz Kilian, 2004. "Oil and the Macroeconomy Since the 1970s," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 115-134, Fall.
    17. Afees A. Salisu & Ahamuefula Ephraim Ogbonna, 2017. "Improving the Predictive ability of oil for inflation: An ADL-MIDAS Approach," Working Papers 025, Centre for Econometric and Allied Research, University of Ibadan.
    18. Basher, Syed Abul & Haug, Alfred A. & Sadorsky, Perry, 2012. "Oil prices, exchange rates and emerging stock markets," Energy Economics, Elsevier, vol. 34(1), pages 227-240.
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Azam, Muhammad & Khan, Abdul Qayyum & Bakhtyar, B. & Emirullah, Chandra, 2015. "The causal relationship between energy consumption and economic growth in the ASEAN-5 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 732-745.
    21. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    22. Yu, Eden S. H. & Hwang, Been-Kwei, 1984. "The relationship between energy and GNP : Further results," Energy Economics, Elsevier, vol. 6(3), pages 186-190, July.
    23. Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.
    24. Alam, M. Shahid, 2006. "Economic Growth with Energy," MPRA Paper 1260, University Library of Munich, Germany.
    25. Adams, Samuel & Klobodu, Edem Kwame Mensah & Opoku, Eric Evans Osei, 2016. "Energy consumption, political regime and economic growth in sub-Saharan Africa," Energy Policy, Elsevier, vol. 96(C), pages 36-44.
    26. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2017. "Do oil price asymmetric effects on the stock market persist in multiple time horizons?," Applied Energy, Elsevier, vol. 185(P2), pages 1799-1808.
    27. Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
    28. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    29. Menegaki, Angeliki N. & Tugcu, Can Tansel, 2017. "Energy consumption and Sustainable Economic Welfare in G7 countries; A comparison with the conventional nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 892-901.
    30. Luca ONORANTE & Gianluigi FERRUCCI & Rebeca JIMÉNEZ-RODRÍGUEZ, 2010. "Food Price Pass-Through in the Euro Area: the Role of Asymmetries and Non-Linearities," EcoMod2010 259600125, EcoMod.
    31. Hegerty, Scott W., 2016. "Commodity-price volatility and macroeconomic spillovers: Evidence from nine emerging markets," The North American Journal of Economics and Finance, Elsevier, vol. 35(C), pages 23-37.
    32. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    33. Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
    34. Ocal, Oguz & Aslan, Alper, 2013. "Renewable energy consumption–economic growth nexus in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 494-499.
    35. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    36. Narayan, Seema, 2016. "Predictability within the energy consumption–economic growth nexus: Some evidence from income and regional groups," Economic Modelling, Elsevier, vol. 54(C), pages 515-521.
    37. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    38. Moosa, Imad & Burns, Kelly, 2014. "The unbeatable random walk in exchange rate forecasting: Reality or myth?," Journal of Macroeconomics, Elsevier, vol. 40(C), pages 69-81.
    39. Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
    40. Narayan, Paresh Kumar & Gupta, Rangan, 2015. "Has oil price predicted stock returns for over a century?," Energy Economics, Elsevier, vol. 48(C), pages 18-23.
    41. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.
    42. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    43. Nusair, Salah A., 2016. "The effects of oil price shocks on the economies of the Gulf Co-operation Council countries: Nonlinear analysis," Energy Policy, Elsevier, vol. 91(C), pages 256-267.
    44. Alper, Aslan & Oguz, Ocal, 2016. "The role of renewable energy consumption in economic growth: Evidence from asymmetric causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 953-959.
    45. Sharma, Shahil & Escobari, Diego, 2018. "Identifying price bubble periods in the energy sector," Energy Economics, Elsevier, vol. 69(C), pages 418-429.
    46. Chiou-Wei, Song-Zan & Zhu, Zhen & Chen, Sheng-Hung & Hsueh, Sheng-Pin, 2016. "Controlling for relevant variables: Energy consumption and economic growth nexus revisited in an EGARCH-M (Exponential GARCH-in-Mean) model," Energy, Elsevier, vol. 109(C), pages 391-399.
    47. Miguel I. Gómez & Eliana R. González & Luis F. Melo, 2012. "Forecasting Food Inflation in Developing Countries with Inflation Targeting Regimes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(1), pages 153-173.
    48. Rafindadi, Abdulkadir Abdulrashid & Ozturk, Ilhan, 2015. "Natural gas consumption and economic growth nexus: Is the 10th Malaysian plan attainable within the limits of its resource?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1221-1232.
    49. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    50. Barsoum, Fady & Stankiewicz, Sandra, 2015. "Forecasting GDP growth using mixed-frequency models with switching regimes," International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
    51. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    52. Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
    53. Salisu, Afees A. & Isah, Kazeem O., 2017. "Revisiting the oil price and stock market nexus: A nonlinear Panel ARDL approach," Economic Modelling, Elsevier, vol. 66(C), pages 258-271.
    54. Narayan, Paresh Kumar & Bannigidadmath, Deepa, 2015. "Are Indian stock returns predictable?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 506-531.
    55. Jung, Alexander, 2017. "Forecasting broad money velocity," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 421-432.
    56. Thi Hong Van Hoang & Amine Lahiani & David Heller, 2016. "Is gold a hedge against inflation? New evidence from a nonlinear ARDL approach," Post-Print hal-02012307, HAL.
    57. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    58. Rafindadi, Abdulkadir Abdulrashid & Ozturk, Ilhan, 2017. "Impacts of renewable energy consumption on the German economic growth: Evidence from combined cointegration test," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1130-1141.
    59. Deepa & Paresh K Narayan, "undated". "Are Indian Stock Returns Predictable?," Working Papers 2015_07, Deakin University, Department of Economics.
    60. Imad Moosa & Kelly Burns, 2014. "Error correction modelling and dynamic specifications as a conduit to outperforming the random walk in exchange rate forecasting," Applied Economics, Taylor & Francis Journals, vol. 46(25), pages 3107-3118, September.
    61. Akarca, Ali T. & Long, Thomas II, 1979. "Energy and employment: a time-series analysis of the causal relationship," Resources and Energy, Elsevier, vol. 2(2-3), pages 151-162.
    62. Mo, Di & Gupta, Rakesh & Li, Bin & Singh, Tarlok, 2018. "The macroeconomic determinants of commodity futures volatility: Evidence from Chinese and Indian markets," Economic Modelling, Elsevier, vol. 70(C), pages 543-560.
    63. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    64. Akinlo, A.E., 2008. "Energy consumption and economic growth: Evidence from 11 Sub-Sahara African countries," Energy Economics, Elsevier, vol. 30(5), pages 2391-2400, September.
    65. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    66. Okyay U an & Ebru Ar c o lu & Fatih Y cel, 2014. "Energy Consumption and Economic Growth Nexus: Evidence from Developed Countries in Europe," International Journal of Energy Economics and Policy, Econjournals, vol. 4(3), pages 411-419.
    67. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    68. Jaruwan Chontanawat & Lester C Hunt & Richard Pierse, 2006. "Causality between Energy Consumption and GDP: Evidence from 30 OECD and 78 Non-OECD Countries," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 113, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
    69. Gormus, N. Alper & Atinc, Guclu, 2016. "Volatile oil and the U.S. economy," Economic Analysis and Policy, Elsevier, vol. 50(C), pages 62-73.
    70. Rodríguez-Caballero, Carlos Vladimir & Ventosa-Santaulària, Daniel, 2017. "Energy-growth long-term relationship under structural breaks. Evidence from Canada, 17 Latin American economies and the USA," Energy Economics, Elsevier, vol. 61(C), pages 121-134.
    71. Pinzón, Kathia, 2018. "Dynamics between energy consumption and economic growth in Ecuador: A granger causality analysis," Economic Analysis and Policy, Elsevier, vol. 57(C), pages 88-101.
    72. Robin C. Sickles & William C. Horrace (ed.), 2014. "Festschrift in Honor of Peter Schmidt," Springer Books, Springer, edition 127, number 978-1-4899-8008-3, February.
    73. Qiang Ji, Ying Fan, Mike Troilo, Ronald D. Ripple, and Lianyong Feng, 2018. "China's Natural Gas Demand Projections and Supply Capacity Analysis in 2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    74. Dogan, Eyup, 2016. "Analyzing the linkage between renewable and non-renewable energy consumption and economic growth by considering structural break in time-series data," Renewable Energy, Elsevier, vol. 99(C), pages 1126-1136.
    75. Sam Olofin & Afees A. Salisu, 2017. "Modelling oil price-inflation nexus: The role of asymmetries and structural breaks," Working Papers 020, Centre for Econometric and Allied Research, University of Ibadan.
    76. Brini, Riadh & Amara, Mohamed & Jemmali, Hatem, 2017. "Renewable energy consumption, International trade, oil price and economic growth inter-linkages: The case of Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 620-627.
    77. Salisu, Afees A. & Isah, Kazeem O. & Oyewole, Oluwatomisin J. & Akanni, Lateef O., 2017. "Modelling oil price-inflation nexus: The role of asymmetries," Energy, Elsevier, vol. 125(C), pages 97-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afees A. Salisu & Rangan Gupta, 2021. "How Do Housing Returns in Emerging Countries Respond to Oil Shocks? A MIDAS Touch," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4286-4311, December.
    2. Piotr F. Borowski, 2021. "Significance and Directions of Energy Development in African Countries," Energies, MDPI, vol. 14(15), pages 1-19, July.
    3. Afees A. Salisu & Umar B. Ndako & Idris Adediran, 2018. "Forecasting GDP of OPEC: The role of oil price," Working Papers 044, Centre for Econometric and Allied Research, University of Ibadan.
    4. Salisu, Afees A. & Cuñado, Juncal & Gupta, Rangan, 2022. "Geopolitical risks and historical exchange rate volatility of the BRICS," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 179-190.
    5. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2022. "A moving average heterogeneous autoregressive model for forecasting the realized volatility of the US stock market: Evidence from over a century of data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 384-400, January.
    6. Olubusoye, Olusanya E & Yaya, OlaOluwa S. & Ogbonna, Ahamuefula, 2021. "An Information-Based Index of Uncertainty and the predictability of Energy Prices," MPRA Paper 109839, University Library of Munich, Germany.
    7. Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2022. "Mixed‐frequency forecasting of crude oil volatility based on the information content of global economic conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 134-157, January.
    8. Afees A. Salisu & Rangan Gupta & Riza Demirer, 2022. "A Note On Uncertainty Due To Infectious Diseases And Output Growth Of The United States: A Mixed-Frequency Forecasting Experiment," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-9, June.
    9. Salisu, Afees A. & Gupta, Rangan, 2021. "Oil shocks and stock market volatility of the BRICS: A GARCH-MIDAS approach," Global Finance Journal, Elsevier, vol. 48(C).
    10. Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2020. "Forecasting Oil Volatility Using a GARCH-MIDAS Approach: The Role of Global Economic Conditions," Working Papers 202051, University of Pretoria, Department of Economics.
    11. Salisu, Afees A. & Demirer, Riza & Gupta, Rangan, 2022. "Financial turbulence, systemic risk and the predictability of stock market volatility," Global Finance Journal, Elsevier, vol. 52(C).
    12. Gong, Xu & Chen, Liqiang & Lin, Boqiang, 2020. "Analyzing dynamic impacts of different oil shocks on oil price," Energy, Elsevier, vol. 198(C).
    13. Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022. "Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model," Energy Economics, Elsevier, vol. 108(C).
    14. Dang, Dong Quang & Wu, Weiou & Korkos, Ioannis, 2024. "Stock market and inequality distributions – Evidence from the BRICS and G7 countries," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1172-1190.
    15. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Vo, Xuan Vinh, 2022. "Oil shocks and volatility of green investments: GARCH-MIDAS analyses," Resources Policy, Elsevier, vol. 78(C).
    16. Olubusoye, Olusanya E & Akintande, Olalekan J. & Yaya, OlaOluwa S. & Ogbonna, Ahamuefula & Adenikinju, Adeola F., 2021. "Energy Pricing during the COVID-19 Pandemic: Predictive Information-Based Uncertainty Indexes with Machine Learning Algorithm," MPRA Paper 109838, University Library of Munich, Germany.
    17. Tumala, Mohammed M. & Salisu, Afees A. & Atoi, Ngozi V., 2022. "Oil-growth nexus in Nigeria: An ADL-MIDAS approach," Resources Policy, Elsevier, vol. 77(C).
    18. Salisu, Afees A. & Gupta, Rangan & Bouri, Elie & Ji, Qiang, 2020. "The role of global economic conditions in forecasting gold market volatility: Evidence from a GARCH-MIDAS approach," Research in International Business and Finance, Elsevier, vol. 54(C).
    19. He, Yongda & Lin, Boqiang, 2018. "Forecasting China's total energy demand and its structure using ADL-MIDAS model," Energy, Elsevier, vol. 151(C), pages 420-429.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salisu, Afees A. & Isah, Kazeem O., 2018. "Predicting US inflation: Evidence from a new approach," Economic Modelling, Elsevier, vol. 71(C), pages 134-158.
    2. Afees A. Salisu & Umar B. Ndako & Idris Adediran, 2018. "Forecasting GDP of OPEC: The role of oil price," Working Papers 044, Centre for Econometric and Allied Research, University of Ibadan.
    3. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    4. Salisu, Afees A. & Adediran, Idris A. & Oloko, Tirimisiyu O. & Ohemeng, William, 2020. "The heterogeneous behaviour of the inflation hedging property of cocoa," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    5. Afees A. Salisu & Rangan Gupta, 2021. "How Do Housing Returns in Emerging Countries Respond to Oil Shocks? A MIDAS Touch," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4286-4311, December.
    6. Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
    7. Salisu, Afees A. & Raheem, Ibrahim D. & Ndako, Umar B., 2019. "A sectoral analysis of asymmetric nexus between oil price and stock returns," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 241-259.
    8. Moses Tule & Afees Salisu & Charles Chiemeke, 2020. "Improving Nigeria’s Inflation Forecast with Oil Price: The Role of Estimators," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(1), pages 191-229, March.
    9. Moses Tule & Afees A. Salisu & Charles Chimeke, 2018. "You are what you eat: The role of oil price in Nigeria inflation forecast," Working Papers 040, Centre for Econometric and Allied Research, University of Ibadan.
    10. Afees A. Salisu & Juncal Cunado & Kazeem Isah & Rangan Gupta, 2020. "Oil Price and Exchange Rate Behaviour of the BRICS for Over a Century," Working Papers 202064, University of Pretoria, Department of Economics.
    11. Afees A. Salisu & Raymond Swaray & Idris Adediran, 2018. "Improving the predictability of commodity prices in US inflation: The role of coffee price," Working Papers 041, Centre for Econometric and Allied Research, University of Ibadan.
    12. Hadhri, Sinda, 2021. "The nexus, downside risk and asset allocation between oil and Islamic stock markets: A cross-country analysis," Energy Economics, Elsevier, vol. 101(C).
    13. Afees A. Salisu & Kazeem O. Isah & Idris Ademuyiwa, 2017. "Testing for asymmetries in the predictive model for oil price-inflation nexus," Economics Bulletin, AccessEcon, vol. 37(3), pages 1797-1804.
    14. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    15. Salisu, Afees A. & Adekunle, Wasiu & Alimi, Wasiu A. & Emmanuel, Zachariah, 2019. "Predicting exchange rate with commodity prices: New evidence from Westerlund and Narayan (2015) estimator with structural breaks and asymmetries," Resources Policy, Elsevier, vol. 62(C), pages 33-56.
    16. Salisu, Afees A. & Raheem, Ibrahim D. & Ndako, Umar B., 2020. "The inflation hedging properties of gold, stocks and real estate: A comparative analysis," Resources Policy, Elsevier, vol. 66(C).
    17. Mehmet Balcilar & Zeynel Abidin Ozdemir & Huseyin Ozdemir & Muhammad Shahbaz, 2018. "Carbon dioxide emissions, energy consumption and economic growth: The historical decomposition evidence from G-7 countries," Working Papers 15-41, Eastern Mediterranean University, Department of Economics.
    18. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    19. Mehmet Balcilar & Zeynel Abidin Ozdemir & Bedriye Tunçsiper & Huseyin Ozdemir & Muhammad Shahbaz, 2020. "On the nexus among carbon dioxide emissions, energy consumption and economic growth in G-7 countries: new insights from the historical decomposition approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 8097-8134, December.
    20. Afees A. Salisu & Ahamuefula Ephraim Ogbonna, 2017. "Improving the Predictive ability of oil for inflation: An ADL-MIDAS Approach," Working Papers 025, Centre for Econometric and Allied Research, University of Ibadan.

    More about this item

    Keywords

    Energy consumption; Growth; ADL-MIDAS; Linear time series models; Forecast evaluation;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cui:wpaper:0035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adeoye Omosebi (email available below). General contact details of provider: https://edirc.repec.org/data/ceuibng.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.