IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221022167.html
   My bibliography  Save this article

Forecasting oil prices: New approaches

Author

Listed:
  • Kertlly de Medeiros, Rennan
  • da Nóbrega Besarria, Cássio
  • Pitta de Jesus, Diego
  • Phillipe de Albuquerquemello, Vinicius

Abstract

This paper proposes alternative methodologies for oil price forecasting using mixed-frequency data and a textual sentiment indicator. The latter variable was extracted from oil market reports issued by the Energy Information Administration. We used the root mean square error (RMSE) to evaluate the forecasting accuracy of the econometric models. Compared with other econometric models, the mixed data sampling (MIDAS) model with high-frequency financial indicators and the sentiment index as explanatory variables performs better for forecasting crude oil prices.

Suggested Citation

  • Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022167
    DOI: 10.1016/j.energy.2021.121968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    2. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    3. Andrea Coppola, 2008. "Forecasting oil price movements: Exploiting the information in the futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(1), pages 34-56, January.
    4. Joakim Westerlund & Paresh Narayan, 2015. "Testing for Predictability in Conditionally Heteroskedastic Stock Returns," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 342-375.
    5. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    6. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
    7. Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
    8. Murat, Atilim & Tokat, Ekin, 2009. "Forecasting oil price movements with crack spread futures," Energy Economics, Elsevier, vol. 31(1), pages 85-90, January.
    9. Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
    10. Hamilton, James D., 2011. "Nonlinearities And The Macroeconomic Effects Of Oil Prices," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 364-378, November.
    11. Christiane Baumeister & Lutz Kilian, 2016. "Understanding the Decline in the Price of Oil since June 2014," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 131-158.
    12. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    13. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    14. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
    15. Cunado, Juncal & Perez de Gracia, Fernando, 2003. "Do oil price shocks matter? Evidence for some European countries," Energy Economics, Elsevier, vol. 25(2), pages 137-154, March.
    16. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    17. Chiroma, Haruna & Abdulkareem, Sameem & Herawan, Tutut, 2015. "Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction," Applied Energy, Elsevier, vol. 142(C), pages 266-273.
    18. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    19. Engle, Robert F, 1983. "Estimates of the Variance of U.S. Inflation Based upon the ARCH Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 15(3), pages 286-301, August.
    20. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    21. repec:oup:ecpoli:v:29:y:2014:i:80:p:691-747 is not listed on IDEAS
    22. Salisu, Afees A. & Raheem, Ibrahim D. & Ndako, Umar B., 2019. "A sectoral analysis of asymmetric nexus between oil price and stock returns," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 241-259.
    23. Chai, Jian & Xing, Li-Min & Zhou, Xiao-Yang & Zhang, Zhe George & Li, Jie-Xun, 2018. "Forecasting the WTI crude oil price by a hybrid-refined method," Energy Economics, Elsevier, vol. 71(C), pages 114-127.
    24. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    25. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    26. Mr. David A Reichsfeld & Mr. Shaun K. Roache, 2011. "Do Commodity Futures Help Forecast Spot Prices?," IMF Working Papers 2011/254, International Monetary Fund.
    27. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    28. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    29. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    30. Christiane Baumeister & Lutz Kilian, 2014. "Do oil price increases cause higher food prices? [Biofuels, binding constraints, and agricultural commodity price volatility]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 29(80), pages 691-747.
    31. Naoyuki Yoshino & Farhad Taghizadeh-Hesary, 2014. "Monetary policy and oil price fluctuations following the subprime mortgage crisis," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 7(3), pages 157-174.
    32. Massimiliano Giacalone & Raffaele Mattera & Eugenia Nissi, 2020. "Economic indicators forecasting in presence of seasonal patterns: time series revision and prediction accuracy," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 67-84, February.
    33. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    34. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    35. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    36. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
    37. de Albuquerquemello, Vinícius Phillipe & de Medeiros, Rennan Kertlly & da Nóbrega Besarria, Cássio & Maia, Sinézio Fernandes, 2018. "Forecasting crude oil price: Does exist an optimal econometric model?," Energy, Elsevier, vol. 155(C), pages 578-591.
    38. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
    39. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
    40. Kyrtsou, Catherine & Malliaris, Anastasios G. & Serletis, Apostolos, 2009. "Energy sector pricing: On the role of neglected nonlinearity," Energy Economics, Elsevier, vol. 31(3), pages 492-502, May.
    41. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    42. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    43. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    44. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    2. de Medeiros, Rennan Kertlly & da Silva Bejarano Aragón, Edilean Kleber & Besarria, Cássio da Nóbrega, 2023. "Effects of oil market sentiment on macroeconomic variables," Resources Policy, Elsevier, vol. 83(C).
    3. Wu, Wei & Xu, Meiqi & Su, Ruiqian & Ullah, Kaleem, 2024. "Modeling crude oil volatility using economic sentiment analysis and opinion mining of investors via deep learning and machine learning models," Energy, Elsevier, vol. 289(C).
    4. Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
    5. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Albuquerquemello, Vinícius Phillipe & de Medeiros, Rennan Kertlly & da Nóbrega Besarria, Cássio & Maia, Sinézio Fernandes, 2018. "Forecasting crude oil price: Does exist an optimal econometric model?," Energy, Elsevier, vol. 155(C), pages 578-591.
    2. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    3. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
    4. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
    5. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    6. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    7. Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024. "Reservoir computing for macroeconomic forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
    8. Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
    9. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    10. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    11. Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
    12. Akdoğan, Kurmaş, 2020. "Fundamentals versus speculation in oil market: The role of asymmetries in price adjustment?," Resources Policy, Elsevier, vol. 67(C).
    13. Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
    14. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    15. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    16. Charfeddine, Lanouar & Klein, Tony & Walther, Thomas, 2018. "Oil Price Changes and U.S. Real GDP Growth: Is this Time Different?," QBS Working Paper Series 2018/03, Queen's University Belfast, Queen's Business School.
    17. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    18. Morita, Hiroshi, 2022. "Forecasting GDP growth using stock returns in Japan: A factor-augmented MIDAS approach," Discussion paper series HIAS-E-118, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    19. Michal Franta & David Havrlant & Marek Rusnák, 2016. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.
    20. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.

    More about this item

    Keywords

    Forecasting oil prices; Time series; Econometrics; MIDAS model; Sentiment index;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.