Could Cryptocurrency Policy Uncertainty Facilitate U.S. Carbon Neutrality?
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kim, Daehan & Ryu, Doojin & Webb, Robert I., 2023. "Determination of equilibrium transaction fees in the Bitcoin network: A rank-order contest," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Andrea Silvestrini & David Veredas, 2008.
"Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey,"
Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
- Andrea Silvestrini & David Veredas, 2008. "Temporal aggregation of univariate and multivariate time series models: a survey," ULB Institutional Repository 2013/136205, ULB -- Universite Libre de Bruxelles.
- Andrea Silvestrini & David Veredas, 2008. "Temporal aggregation of univariate and multivariate time series models: A survey," Temi di discussione (Economic working papers) 685, Bank of Italy, Economic Research and International Relations Area.
- SILVESTRINI, Andrea & VEREDAS, David, 2009. "Temporal aggregation of univariate and multivariate time series models: A survey," LIDAM Reprints CORE 2013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Qin, Meng & Zhang, Xiaojing & Li, Yameng & Badarcea, Roxana Maria, 2023. "Blockchain market and green finance: The enablers of carbon neutrality in China," Energy Economics, Elsevier, vol. 118(C).
- Anwer, Zaheer & Farid, Saqib & Khan, Ashraf & Benlagha, Noureddine, 2023. "Cryptocurrencies versus environmentally sustainable assets: Does a perfect hedge exist?," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 418-431.
- Motegi, Kaiji & Sadahiro, Akira, 2018. "Sluggish private investment in Japan’s Lost Decade: Mixed frequency vector autoregression approach," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 118-128.
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016.
"Testing for Granger causality in large mixed-frequency VARs,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
- Götz, T.B. & Hecq, A.W., 2014. "Testing for Granger causality in large mixed-frequency VARs," Research Memorandum 028, Maastricht University, Graduate School of Business and Economics (GSBE).
- Götz, T.B. & Hecq, A.W. & Smeekes, S., 2015. "Testing for Granger Causality in Large Mixed-Frequency VARs," Research Memorandum 036, Maastricht University, Graduate School of Business and Economics (GSBE).
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
- Ghabri, Yosra & Ben Rhouma, Oussama & Gana, Marjène & Guesmi, Khaled & Benkraiem, Ramzi, 2022. "Information transmission among energy markets, cryptocurrencies, and stablecoins under pandemic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Yang, Lu & Hamori, Shigeyuki, 2021. "The role of the carbon market in relation to the cryptocurrency market: Only diversification or more?," International Review of Financial Analysis, Elsevier, vol. 77(C).
- J. Isaac Miller, 2014.
"Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures,"
Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
- J. Isaac Miller, 2012. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Working Papers 1211, Department of Economics, University of Missouri.
- Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016.
"Testing for Granger causality with mixed frequency data,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
- Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2013. "Testing for Granger Causality with Mixed Frequency Data," CEPR Discussion Papers 9655, C.E.P.R. Discussion Papers.
- Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2021. "Bitcoin-energy markets interrelationships - New evidence," Resources Policy, Elsevier, vol. 70(C).
- Jana, Rabin K. & Ghosh, Indranil & Wallin, Martin W., 2022. "Taming energy and electronic waste generation in bitcoin mining: Insights from Facebook prophet and deep neural network," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Baur, Dirk G. & Oll, Josua, 2022. "Bitcoin investments and climate change: A financial and carbon intensity perspective," Finance Research Letters, Elsevier, vol. 47(PA).
- Su, Chi-Wei & Qin, Meng & Tao, Ran & Umar, Muhammad, 2020. "Financial implications of fourth industrial revolution: Can bitcoin improve prospects of energy investment?," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
- Hu, Jinyan & Wang, Kai-Hua & Su, Chi Wei & Umar, Muhammad, 2022. "Oil price, green innovation and institutional pressure: A China's perspective," Resources Policy, Elsevier, vol. 78(C).
- Tee, Chwee-Ming & Wong, Wai-Yan & Hooy, Chee-Wooi, 2023. "Economic policy uncertainty and carbon footprint: International evidence," Journal of Multinational Financial Management, Elsevier, vol. 67(C).
- Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa & Wang, Yizhi, 2022. "The cryptocurrency uncertainty index," Finance Research Letters, Elsevier, vol. 45(C).
- Sarkodie, Samuel Asumadu & Ahmed, Maruf Yakubu & Leirvik, Thomas, 2022. "Trade volume affects bitcoin energy consumption and carbon footprint," Finance Research Letters, Elsevier, vol. 48(C).
- Wang, Kai-Hua & Su, Chi-Wei & Umar, Muhammad, 2021. "Geopolitical risk and crude oil security: A Chinese perspective," Energy, Elsevier, vol. 219(C).
- Pham, Linh & Karim, Sitara & Naeem, Muhammad Abubakr & Long, Cheng, 2022. "A tale of two tails among carbon prices, green and non-green cryptocurrencies," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Li, Jingming & Li, Nianping & Peng, Jinqing & Cui, Haijiao & Wu, Zhibin, 2019. "Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies," Energy, Elsevier, vol. 168(C), pages 160-168.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhong, Yufei & Chen, Xuesheng & Wang, Chengfang & Wang, Zhixian & Zhang, Yuchen, 2023. "The hedging performance of green bond markets in China and the U.S.: Novel evidence from cryptocurrency uncertainty," Energy Economics, Elsevier, vol. 128(C).
- Qin, Meng & Wu, Tong & Ma, Xuecheng & Albu, Lucian Liviu & Umar, Muhammad, 2023. "Are energy consumption and carbon emission caused by Bitcoin? A novel time-varying technique," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 109-120.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qin, Meng & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "Blockchain: A carbon-neutral facilitator or an environmental destroyer?," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 604-615.
- Thomas B. Götz & Alain W. Hecq, 2019.
"Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
- Hecq, Alain & Goetz, Thomas, 2018. "Granger causality testing in mixed-frequency Vars with possibly (co)integrated processes," MPRA Paper 87746, University Library of Munich, Germany.
- Abakah, Emmanuel Joel Aikins & Hossain, Sahib & Abdullah, Mohammad & Goodell, John W., 2024. "Global uncertainty factors and price connectedness between US electricity and blockchain markets: Findings from an R-square connectedness approach," Finance Research Letters, Elsevier, vol. 59(C).
- Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016.
"Testing for Granger causality with mixed frequency data,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
- Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2013. "Testing for Granger Causality with Mixed Frequency Data," CEPR Discussion Papers 9655, C.E.P.R. Discussion Papers.
- Pham, Linh & Huynh, Toan Luu Duc & Hanif, Waqas, 2023. "Time-varying asymmetric spillovers among cryptocurrency, green and fossil-fuel investments," Global Finance Journal, Elsevier, vol. 58(C).
- Anatolyy Dzyuba & Irina Solovyeva & Dmitry Konopelko, 2023. "Managing Electricity Costs in Industrial Mining and Cryptocurrency Data Centers," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 76-90, July.
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016.
"Testing for Granger causality in large mixed-frequency VARs,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
- Götz, T.B. & Hecq, A.W., 2014. "Testing for Granger causality in large mixed-frequency VARs," Research Memorandum 028, Maastricht University, Graduate School of Business and Economics (GSBE).
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
- Götz, T.B. & Hecq, A.W. & Smeekes, S., 2015. "Testing for Granger Causality in Large Mixed-Frequency VARs," Research Memorandum 036, Maastricht University, Graduate School of Business and Economics (GSBE).
- Qin, Meng & Zhang, Xiaojing & Li, Yameng & Badarcea, Roxana Maria, 2023. "Blockchain market and green finance: The enablers of carbon neutrality in China," Energy Economics, Elsevier, vol. 118(C).
- Sharif, Arshian & Brahim, Mariem & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "Analysis of the spillover effects between green economy, clean and dirty cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
- Motegi, Kaiji & Sadahiro, Akira, 2018. "Sluggish private investment in Japan’s Lost Decade: Mixed frequency vector autoregression approach," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 118-128.
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Ye, Wang & Wong, Wing-Keung & Arnone, Gioia & Nassani, Abdelmohsen A. & Haffar, Mohamed & Faiz, Muhammad Fauzinudin, 2023. "Crypto currency and green investment impact on global environment: A time series analysis," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 155-169.
- Hu, Jinyan & Wang, Kai-Hua & Su, Chi Wei & Umar, Muhammad, 2022. "Oil price, green innovation and institutional pressure: A China's perspective," Resources Policy, Elsevier, vol. 78(C).
- Mingbo Zheng & Gen-Fu Feng & Xinxin Zhao & Chun-Ping Chang, 2023. "The transaction behavior of cryptocurrency and electricity consumption," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-18, December.
- Qin, Meng & Wu, Tong & Ma, Xuecheng & Albu, Lucian Liviu & Umar, Muhammad, 2023. "Are energy consumption and carbon emission caused by Bitcoin? A novel time-varying technique," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 109-120.
- Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
- Hong Shen & Qi Pan, 2022. "Risk Contagion between Commodity Markets and the Macro Economy during COVID-19: Evidence from China," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
- Zhang, Dongna & Chen, Xihui Haviour & Lau, Chi Keung Marco & Xu, Bing, 2023. "Implications of cryptocurrency energy usage on climate change," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
- Yerushalmi, Erez & Paladini, Stefania, 2023. "Blockchain in Financial Intermediation and Beyond: What are the Main Barriers for Widespread Adoption?," CAFE Working Papers 22, Centre for Accountancy, Finance and Economics (CAFE), Birmingham City Business School, Birmingham City University.
- Díaz, Antonio & Esparcia, Carlos & Huélamo, Diego, 2023. "Unveiling the diversification capabilities of carbon markets in NFT portfolios," Finance Research Letters, Elsevier, vol. 58(PD).
More about this item
Keywords
cryptocurrency policy uncertainty; carbon neutrality; mixed-frequency data; MF-VAR model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7479-:d:1138222. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.