IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v7y2018icp115-133.html
   My bibliography  Save this article

Composite quantile regression for GARCH models using high-frequency data

Author

Listed:
  • Wang, Meng
  • Chen, Zhao
  • Wang, Christina Dan

Abstract

The composite quantile regression (CQR) method is newly proposed to estimate the generalized autoregressive conditional heteroskedasticity (GARCH) models, with the help of high-frequency data. High-frequency intraday log-return processes are embedded into the daily GARCH models to generate the corresponding volatility proxies. Based on proxies, the parameter estimation of GARCH model is derived through the composite quantile regression. The consistency and the asymptotic normality of the proposed estimator are obtained under mild conditions on the innovation processes. To examine the finite sample performance of our newly proposed method, simulation studies are conducted with comparison to several existing estimators of the GARCH model. From the simulation studies, it can be concluded that the proposed CQR estimator is robust and more efficient. An empirical analysis on high-frequency data is presented to illustrate the new methodology.

Suggested Citation

  • Wang, Meng & Chen, Zhao & Wang, Christina Dan, 2018. "Composite quantile regression for GARCH models using high-frequency data," Econometrics and Statistics, Elsevier, vol. 7(C), pages 115-133.
  • Handle: RePEc:eee:ecosta:v:7:y:2018:i:c:p:115-133
    DOI: 10.1016/j.ecosta.2016.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306216300284
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2016.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    3. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Xiao, Zhijie & Koenker, Roger, 2009. "Conditional Quantile Estimation for Generalized Autoregressive Conditional Heteroscedasticity Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1696-1712.
    6. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    7. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    8. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    9. Bo Kai & Runze Li & Hui Zou, 2010. "Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 49-69, January.
    10. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(5), pages 793-813, December.
    11. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
    12. Peng, Liang & Yao, Qiwei, 2003. "Least absolute deviations estimation for ARCH and GARCH models," LSE Research Online Documents on Economics 5828, London School of Economics and Political Science, LSE Library.
    13. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    14. Marcel P. Visser, 2011. "GARCH Parameter Estimation Using High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 9(1), pages 162-197, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donggyu Kim & Minseog Oh & Yazhen Wang, 2022. "Conditional quantile analysis for realized GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 640-665, July.
    2. Vincenzo Candila & Giampiero M. Gallo & Lea Petrella, 2020. "Mixed--frequency quantile regressions to forecast Value--at--Risk and Expected Shortfall," Papers 2011.00552, arXiv.org, revised Mar 2023.
    3. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    4. Cathy W.S. Chen & Toshiaki Watanabe, 2019. "Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 747-765, May.
    5. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    6. Stavros Stavroyiannis, 2016. "Value-at-Risk and backtesting with the APARCH model and the standardized Pearson type IV distribution," Papers 1602.05749, arXiv.org.
    7. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    8. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    9. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    10. Karmakar, Madhusudan & Paul, Samit, 2016. "Intraday risk management in International stock markets: A conditional EVT approach," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 34-55.
    11. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    12. Mauro Bernardi & Leopoldo Catania & Lea Petrella, 2014. "Are news important to predict large losses?," Papers 1410.6898, arXiv.org, revised Oct 2014.
    13. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    14. Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
    15. Xiaochun Liu, 2017. "An integrated macro‐financial risk‐based approach to the stressed capital requirement," Review of Financial Economics, John Wiley & Sons, vol. 34(1), pages 86-98, September.
    16. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    17. Hubner, Stefan, 2016. "Topics in nonparametric identification and estimation," Other publications TiSEM 08fce56b-3193-46e0-871b-0, Tilburg University, School of Economics and Management.
    18. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    19. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    20. Donggyu Kim & Minseok Shin & Yazhen Wang, 2023. "Overnight GARCH-Itô Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1215-1227, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:7:y:2018:i:c:p:115-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.